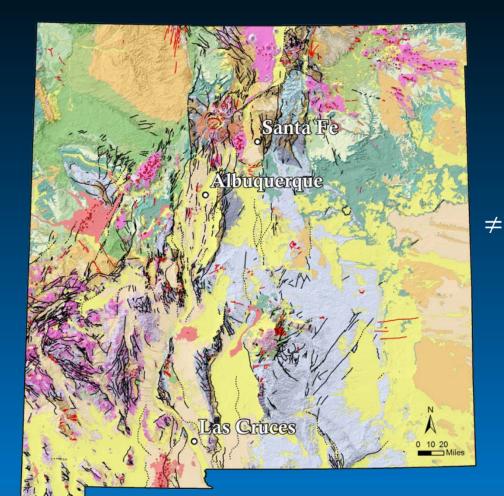
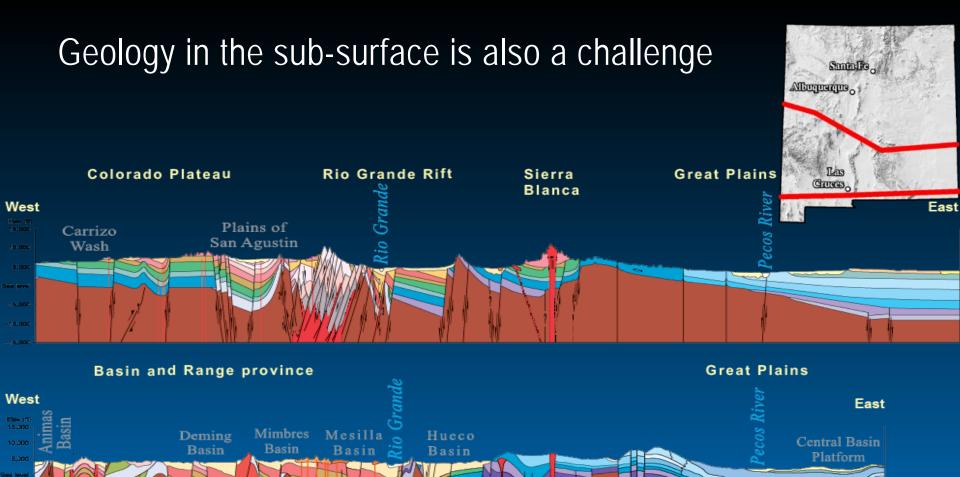
AQUIFER MAPPING PROGRAM: STATUS REPORT OCTOBER 2015

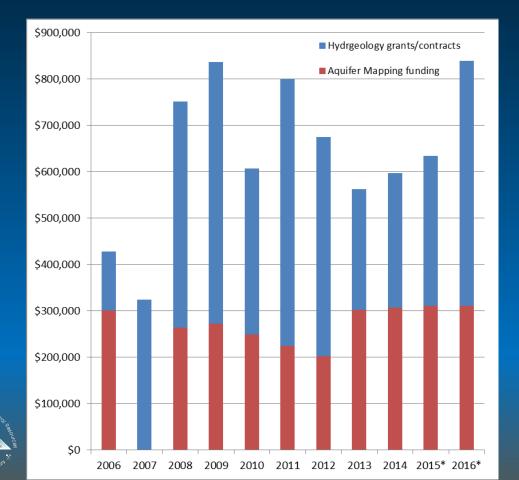


Stacy Timmons

Hydrogeologist, Aquifer Mapping Program Manager


The geology of New Mexico is complex and so are the aquifers

Nebraska


Large vertical exaggeration!

Cross Section Along Southern Nebroska Border

Aquifer Mapping Program: Addressing quantity, quality and distribution of groundwater

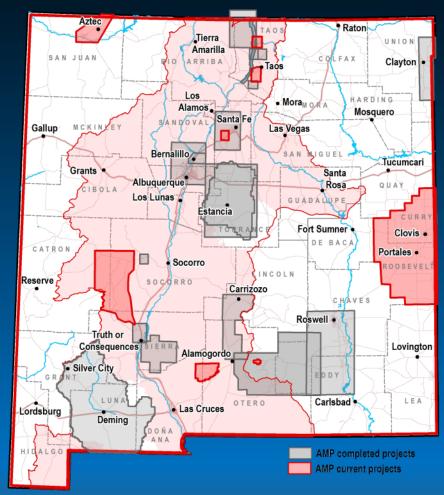
- Aquifer Mapping Program started in 2006 as an RPSP
- Funding has varied and been supplemented by grants/contracts
- We use in-house expertise in geology, hydrology, geochemistry, and geophysics

The purpose of this program is to provide scientific data and interpretations on the quantity, quality, and distribution of the state's aquifers to a diverse group of water agencies and stakeholders in order to support informed decision making and increase public education and awareness on critical water issues.

PARTNERS AND USERS

- <u>Academic Institutions</u>: NMT, UNM, NMSU, Highlands
- <u>State Agencies</u>: NMOSE/NMISC, NM EMNRD, NMED
- <u>Federal Agencies & National Laboratories</u>: US Geological Survey, Los Alamos NL, Sandia NL, US Bureau of Indian Affairs, US Fish & Wildlife Service, US Bureau of Land Management, US Forest Service, NASA
- <u>Counties, Municipalities, Irrigation Districts, Water Utilities</u>: Sandoval, Taos, Otero, Lincoln, Bernalillo, Albuquerque, Santa Fe, Socorro, Catron, Sierra, Town of Taos, City of Santa Fe, Village of Magdalena, City of Truth or Consequences
- **<u>Tribes</u>**: Taos, Picuris, Santo Domingo, Tesuque, Sandia, Isleta, Santa Ana, etc.
- Soil & Water Conservation Districts: Otero, Taos, Northeastern
- Public
- <u>Consultants</u>

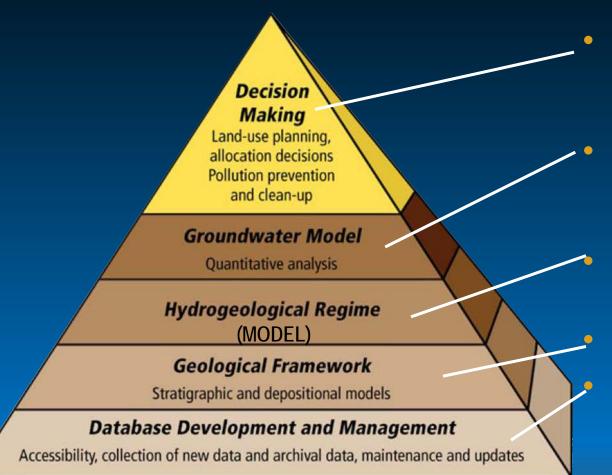
EACH PROJECT IS UNIQUE


Recently completed projects

- •Union County (NESWCD, Healy, Bureau)
- •Eastern Tularosa Basin (OSWCD)
- •Sacramento Mountains (OSWCD)

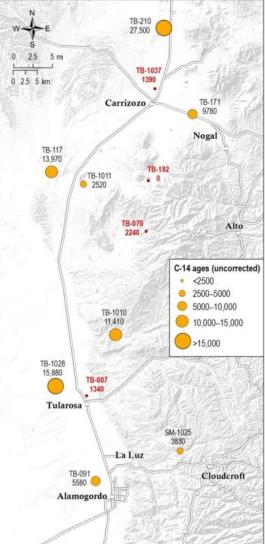
Current projects

- Curry Roosevelt Counties (NMED)
- Animas River aquifer (pending)
- •Statewide recharge and water level changes (WRRI)
- •San Agustin Plains (Bureau)


 Small projects in Taos, Questa, La Cienega, White Sands National Monument

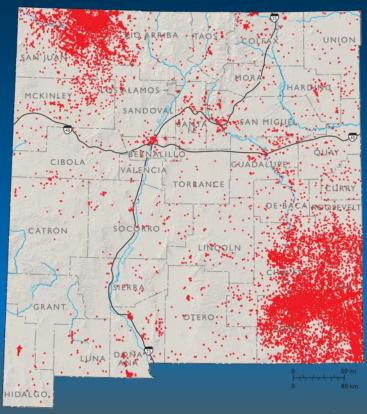
INFORMATION FOR BETTER DECISION MAKING

- Using a solid knowledge foundation to educate decision makers
- Build numerical model(s) to test hypotheses and forecast future conditions
 - Build conceptual models of the system
 - Build a solid geologic model
 - Build a solid foundation with ongoing data collection


THE FOUNDATION OF OUR SCIENCE: DATA COLLECTION

- Groundwater level monitoring
- Water quality sampling
- Water age-dating
- Geothermal groundwater assessment
- Streamflow measurements

Making measurements of groundwater levels



Estimates of groundwater age

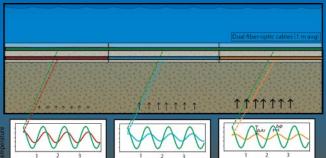

THE FOUNDATION OF OUR SCIENCE: DATA COLLECTION

- Building on our in-house Subsurface Data and Core Library
- Utilizing detailed geologic mapping and cross sections.

Subsurface deep well core and cuttings at Bureau of Geology

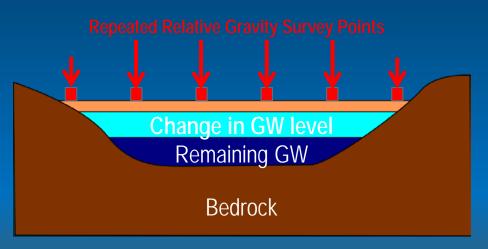
Detailed geologic mapping coverage in NM

THE FOUNDATION OF OUR SCIENCE: DATA COLLECTION


We are using new techniques to address new Mexico's water issues

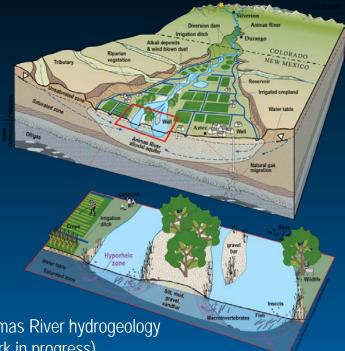
•Temperature cables (DTS) to address recharge

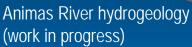
•Gravity to address groundwater storage changes



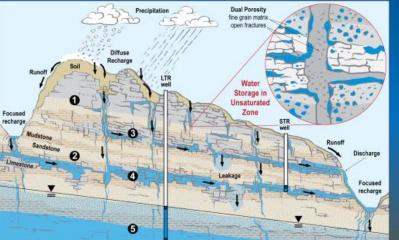
DTS cables in river

Making gravity measurements




BUILDING THE CONCEPTUAL MODELS

10,780


Sunrise

Tts

Sacramento Mountains hydrogeology

Not to scale

[a

Leonora Curtin

2,480

Las Golondrinas

3,410

Τg

Ancestral Santa Fe River

Ti

Te

Las

Lagunitas

5,720

Te

Hydrogeology of

La Cienega area

El Dorado paleo-vall

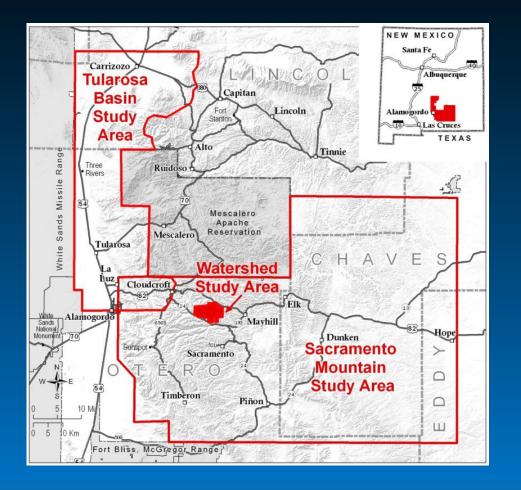
Tts

Tte

AQUIFER MAPPING PROGRAM Addressing quantity, quality and distribution of groundwater

OUR STATEWIDE PROJECTS THIS YEAR

- 1. Digitize and compile legacy water data
- 2. Water quality characterization
 - NMED funding (pending) for fresh and brackish water
 - Interactive web map products

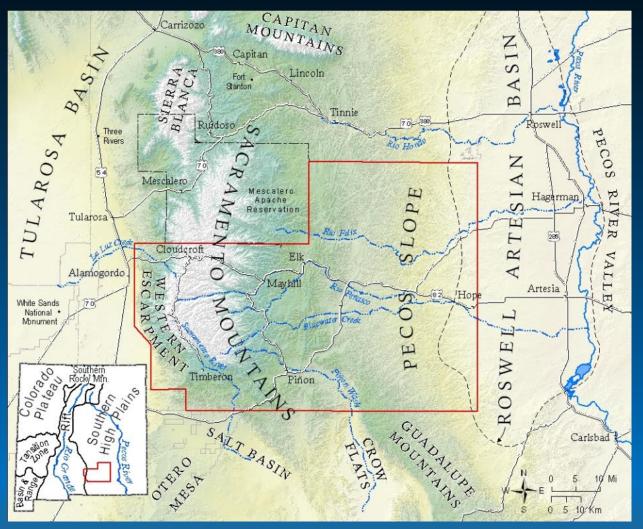

3. WRRI-funded research projects

- Statewide recharge
- Groundwater storage changes

EXAMPLES OF RECENT WORK

Project started in 2005

- Funding grew from \$200K to over \$2.3 million in funding over 10-year study
- Capital outlay to OSWCD
- •Additional funds from ISC, USFS, and USGS (NCGMP)
- Regions of study:
- Southern Sacramento Mountains
- •Eastern Tularosa Basin
- Watershed Study on Effects of Tree Thinning


The Southern Sacramento Mountains Hydrogeology Study

Geoffrey Rawling Hydrogeologist

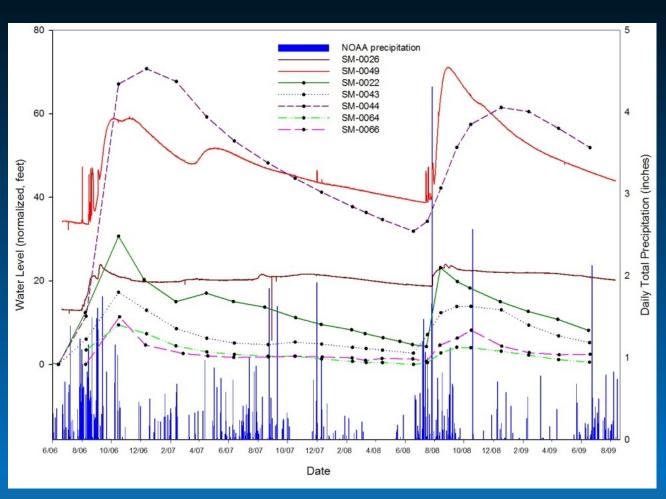
Southern Sacramento Mountains study

- Water source for the Roswell Artesian Basin
- Where does groundwater recharge occur?
- When does groundwater recharge occur?
- How much recharge occurs?

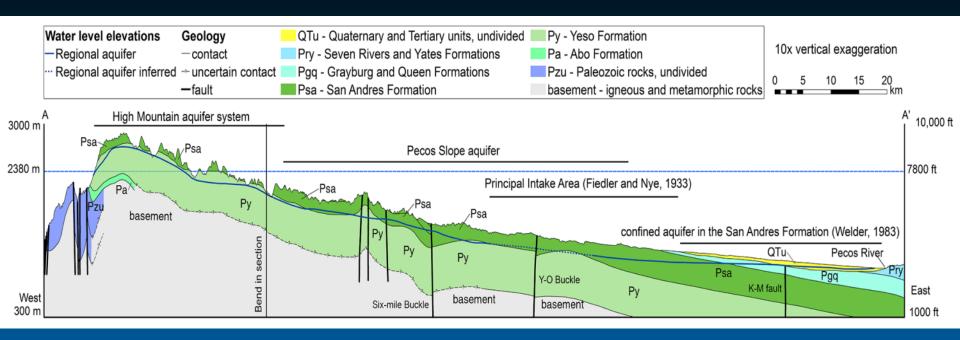
Precipitation collector Streamflow measurement

Methods

- I. Geologic mapping
- II. Water level monitoring
- III. Spring, well, and surface water sampling
- IV. Precipitation sampling
- V. Streamflow measurement
- VI. Analysis of rock fractures
- VII. Soil surveys


Sampling springs

Water levels and precipitation



- Data collection from Dec 2005 to Aug 2009
- Summer 2006 and 2008, winter 2006-07 had water level rises
- Recharge raises pressure in aquifer
- 7 inch threshold for water level rise?
- Other times show level or declining water levels

Hydrogeologic conceptual model

- Multiple, independent lines of evidence from geology, hydrology, and groundwater chemistry indicate that ~ 75% recharge occurs ≥ 7800 ft
- Little recharge occurs on Pecos Slope except along Rio Peñasco (during extreme monsoons?)

Recharge to Sacramento Mountains – Roswell Artesian Basin

	Source	Recharge, af/yr	Method	
1	Fiedler and Nye, 1933	≤ 176,465	Estimate of RAB discharge	
2	Hantush, 1957	192,825	Correlation with precipitation	
3	Saleem and Jacob, 1971	132,047 – 232,095	Correlation with precipitation	
4	Summers, 1972	173,968	Water budget of Pecos Basin	
5	Duffy et al., 1978	133,052	Darcy flow calculation	
6	DBSA, 1995	175,071	Computer model calibration	
7	This study, recharge above 7800 ft	129,599 88,131 – 171,066 (mean ± 1σ)	CI-mass balance including canopy interception	

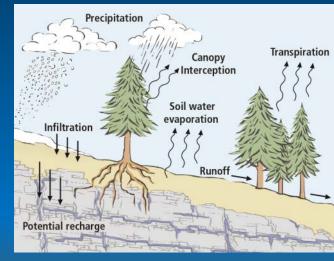
Recharge to Sacramento Mountains

- When? Historically snowmelt has dominated, typical for the SW USA.
- But, extreme monsoon seasons (> 7 inches ?) are important (e.g., 2006, 2008). This may important for the future with declining snowpack
- Where? Above 7800 feet. Much less at lower elevations and on the Pecos Slope except along the Rio Peñasco. During extreme monsoons?
- How Much? 5 10% of precipitation from extreme storms, 24 ± 8 % averaged over the study area over several years; 88,131 – 171,066 acre-ft/year.

Aquifer Mapping results in the southern Sacramento Mountains

- 1:24K and 1:100K geologic maps and cross sections
- Publicly available data on water levels, water chemistry, age dating, etc.
- Final report: NMBGMR OFR-543
- Four papers in peer-reviewed scientific journals
- Watershed study built upon this research

SACRAMENTO MOUNTAINS WATERSHED STUDY

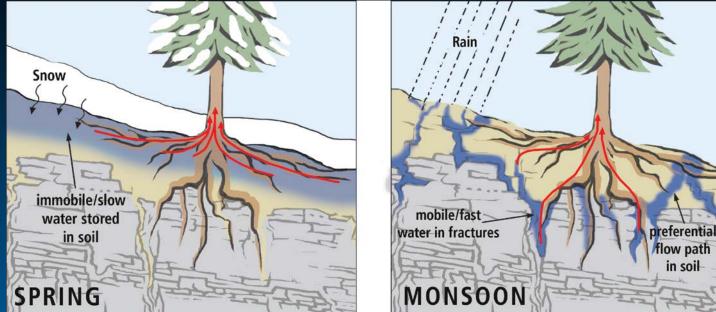


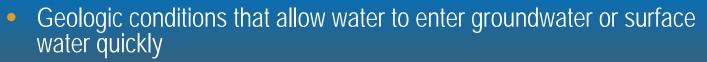
B. Talon Newton Hydrogeologist

Can tree thinning increase our water supply?

Soil water balance

SACRAMENTO MOUNTAINS WATERSHED STUDY


	Water Balance Component	Effects of Tree Thinning	Comments
Inputs	Rain	Large increase	For a 50% decrease in canopy density, the amount of water reaching the ground can increase by more than 100%.
	Snow	Slight increase	High sublimation losses decrease the relative increase in water that contributes to the soil water balance due to lower canopy interception.
Outouts	Evapotranspiration	Significant decrease	This effect is variable and depends on many factors.
	Runoff	No effect	Runoff in the Sacramento mountains is relatively small, and does not appear to change due to tree thinning.
	Potential recharge	Increase	If preferential flow is the primary mechanism by which water makes its way past the soil column, this increase may be very significant
Storage	Soil moisture	Significant increase	Average soil moisture increases, but seasonal fluctuations do not appear to change


SACRAMENTO MOUNTAINS WATERSHED STUDY

Preferential flow paths

Ideal conditions for increasing water yield by thinning trees

- Above average precipitation
- Low temperatures
- Thin soils

in soil

COME VISIT US IN SOCORRO

Matthew Rhoades, Director and State Geologist mrhoades@nmbg.nmt.edu

Phone: 575-835-7625

