NM Legislative Science, Technology & Telecommunications Committee

August 26, 2021

Patricia A. Sullivan, PhD Office of Strategic Initiatives Kathrine Hansen Arrowhead Center

BE BOLD. Shape the Future. **New Mexico State University**

Meeting the U.S. DOE Energy Wind Turbine Recycling Challenge

Outlining the DOE Challenge

Background and Purp	ose		$\left \right $
The REMADE Institute is a Manufacturing USA Institute focused on reuse, recycling,	REMADE Institute Go		
and remanufacturing of metals, fibers, polymers, and electronic waste, to dramatically reduce the embodied energy and carbon emissions associated with industrial-scale materials production and processing.	Reduce energy use and emissions by decreasing primary use in energy-	Crosscutting Inrusts Systems Analysis and Integration Design for Remanufacturing Manufacturing Materials Optimization	
	intensive industries. Replace primary feedstock materials through increased use of secondary feedstocks.		
	Achieve "better than cost" parity between primary and secondary feedstocks.	Remanufacturing and End-of-Life Reuse Recover & Recycling	
	Develop transformational technologies to expand material reuse, remanufacturing, recover, and recycling		

Technical Themes

Funding Opportunities

- Most funding opportunities require matching funds
- Partnerships should be organic and established to increase program success
- Aligned outcomes including economic development and workforce development strategies

Wind Turbine Blade Recycling and Reuse: Framing the Challenge

Transition from Linear to Circular Economy

Circular Economy

Source: rts Partners

Wind Turbine Recycling – Blades Are The Challenge

Source: Veolia, ACMA Composites Recycling Conference, 20 May 2020

Materials	Treatment
Steel	90% recycled + 10 % landfill
Al	90% recycled + 10 % landfill
Cu	90% recycled + 10 % landfill
Polymer materials	50% incinerated + 50% landfill
Lubricants	100% incinerated
All other materials (including concrete)	100% landfill

Source:Waste and Material Flow Analysis in the End-of-Life Wind Energy System, Tazi et. Al., Resources, Conservation and Recycling, Volume 145, June 2019, pages 199-207

Wind turbines are between 75% and 90% recyclable (without the foundation)

But the vast majority of EOL blades currently end up in landfills

Source: Bloomberg

Wind Turbine Blade Composites Waste

Source: Wind Turbine Blade Waste in 2050, Pu Liu and Claire Y. Barlow, University of Cambridge Institute for Manufacturing

Source: Derek Berry, NREL

Source: Hammel Recyclingtechnik Equipment

Source: Bloomberg

Over 50 million metric tons of waste by 2050

Challenges of Wind Turbine Blade Composite Recycling

- Vast majority of blades end up in a landfill at end-of-life
- Few feasible methods to recycle existing blades
- Lack of design for recycling and reuse

Source: ShareAmerica - U.S. Department of State

Source: Hammel Recyclingtechnik Equipment

Wind Turbine Blade Recycling: Potential Opportunities

Meeting the Challenge

Technology Development and Innovation Service Sector and Workforce Development

Illustration by: Marie Boye Thomsen

Research Focus Areas

Potential Opportunities

Strategic Partnerships

- National Renewable Energy Laboratory
- Sandia National Laboratory
- TPI Composites
- Pattern Energy
- Global Fiberglass Solutions Inc.
- Mesalands College
- Secure America Institute
- Border Industrial Alliance
- Albuquerque Economic Development (AED)

Arrowhead Center Sprint Accelerators

AgSprint is a 5-week venture builder for innovators with agricultural applications in food, energy, and the environment. Held in El Paso.

BizSprint is an 8-week Arrowhead Accelerator program for NM's export-based businesses to test the feasibility of their business idea. Held in El Paso, Las Cruces, and Farmington. Multiple cohorts to run in Las Cruces this summer/fall.

EnergySprint is a 5-week venture builder for NM innovators in clean energy technology. Currently in process statewide.

SuperSprint is a one-day Arrowhead Accelerator program focused on expanding offerings into a larger market and how to secure new customers. Held in Albuquerque in partnership with the Minority Business Development Center.

WESprint is a 5-week venture builder for NM women entrepreneurs to test the feasibility of their idea and explore funding opportunities through the SBIR/STTR programs. Held in July.

Native American Sprint is a 5-week accelerator that focuses on the individual needs of each participant, with a goal of helping Native American entrepreneurs successfully start and grow their businesses.

NM Clean Energy Resilience and Growth Cluster (CERG)

- NM CERG will establish a technology development, validation, and growth model that will create a robust pipeline of support for clean energy tech startups in NM
- Funded through the Department of Energy (DOE) Office of Technology Transitions (OTT) Energy Program for Innovation Clusters (EPIC)
- \$1,250,000 over three years (\$1,000,000 in new money)
- Partners include Los Alamos National Laboratory, Sandia National Laboratories, and the New Mexico Economic Development Department

