EV Battery Raw Materials

STTC – Santa Fe September 17, 2021

Abbas Akhil (505) 280-0997 abbas@revtx.com

Slide 1

Each cell houses the essential components of a battery.

They release and store electricity as lithium atoms

Cell components

move between electrodes.

Aluminum current collector

Cylindrical cell

A tough steel casing makes these cells difficult to open. Often durable glue combines thousands of cells into packs.

1 Cathode

of many metals.

2 Anode The cathode typically holds the most valuable recyclable material, made up

Negative electrodes are composed of graphite, carbon, or silicon-based components.

current collector

Copper

3 Electrolyte and separator Lithium travels through a separator sheet soaked in electrolyte.

Source: www.science.org

Slide 2

Tesla Model X: 100 kWh battery has 8,256 cylindrical cells

Location of Key Raw Materials

Global Production Levels

In 2017, 32 countries accounted for all global production of key NMC materials

- 43,000 tons lithium: 44% Australia 34% Chile, Argentina 13%
- 1.2 million tons natural graphite : 67% China, 13% India, Brazil 8%
- 2.1 million tons nickel: 11% Philippines, 10% Canada, 9% Russia, 9% Australia
- 16 million tons manganese: 33% South Africa, 16% China, 14% Australia
- 110,000 tons cobalt: 59% Democratic Republic of Congo, 5% Russia, 5% Australia

Share of top three countries producing processed lithium in 2019

Processed Lithium = Lithium Carbonate and Lithium Hydroxide

Raw Materials by Weight

Slide 6

kg/vehicle

Table 1. LDV Materials Use Estimates (2014–2016)

Years	Total LDV	Units	Material Consumption				
			Cobalt	Lithium ¹	Nickel	Manganese	Graphite
2014		metric tons	1,691	1,381	4,558	1,595	10,649
	(9,600 MWh)	% of mine production	1.40%	4.40%	0.20%	0.00%	
2015	•	metric tons	3,593	2,935	9,685	3,390	22,630
	(20,400 MWh)	% of mine production	2.90%	9.30%	0.40%	0.00%	
2016		metric tons	5,505	4,497	14,841	5,195	34,677
	(31,260 MWh)	% of mine production	5.00%	11.80%	0.70%	0.00%	

Notes: Total LDV LIB use (MWh capacity) estimates for 2014–2016 are based on CEMAC "Benchmarks of Global Clean Energy Manufacturing" 2017 report.¹ Lithium consumption estimates represent material used in cathode and electrolyte manufacturing. At least 60% of graphite used in LDV batteries is synthetic.

Source: NREL estimates

SQM

Sociedad Química y Minera de Chile S.A.

Tesla Model Y – Energy Used per Mile Driven

0.23 kWh per Mile = 5.75 kWh for 25 miles Energy Cost @ 0.13 cents per kWh = 75 cents

MPG for Avg Car = 25 Miles per Gallon = \$4

Tesla Model Y – Emissions Comparison

5.75 kWh for 25 miles2.21 lbs. of CO2 per kWh5.75 kWh releases 12.7 lbs. of CO2

1 gallon of gasoline = 19 lbs. of CO2

EV Battery Degradation

¹Shirk, M. and J. Wishart (2015). Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance, SAE Technical Paper.

²Lambert, F. (2018). Tesla battery degradation at less than 10% after over 160,000 miles, according to latest data. Electrek.

Recycle Batteries or Second Use?

Recycling:

Expensive to extract NMC from used batteries

NOTES:

- **1.** Second use of Pb-acid submarine batteries
- 2. Does second use offer an economic development opportunity for New Mexico?

Second Use in Stationary Applications:

Frequency Regulation

Spinning Reserve

Distribution Support

Energy Arbitrage

Second Use Pilot Project in Germany

