

Ben Shelton Deputy Secretary

EMNRD's Role in the Data Center Landscape

Clarifying Jurisdiction and Strategic Engagement

- EMNRD helps develop energy policy for the state (e.g., CETS, Grid Modernization Plan, Energy Security Plan)
- EMNRD does not permit energy assets for data center generation
- Forestry Division may issue incidental take permits for endangered plant species
- EMNRD intervenes in PRC dockets to support zero-carbon goals, grid planning, and the Governor's agenda broadly

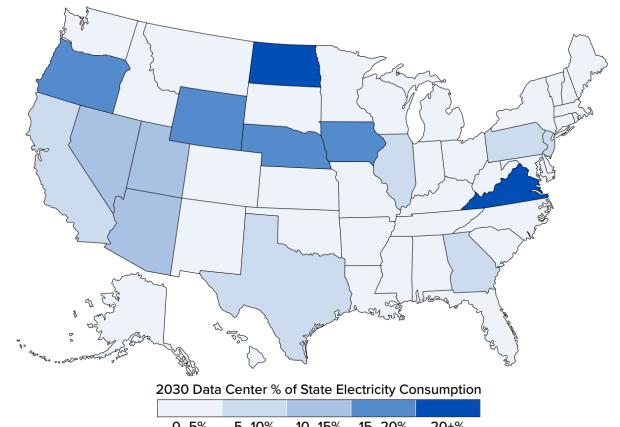
EMNRD Perspective: Grid Strain and Strategic Opportunity Responding to Multi-Gigawatt Data Center Demand

Grid Strain from Hyperscale Growth

- Data centers are driving multi-gigawatt electricity demand, often growing several times faster than traditional load forecasts.
- This rapid growth can overwhelm transmission and interconnection capacity, leading to:
 - Price increases for other rate classes
 - Grid instability and potential cascading outages
 - Planning challenges for utilities and regulators

EMNRD's Strategic Response

- EMNRD views this as a policy inflection point: a chance to modernize the grid while protecting ratepayers.
- Supports solutions including:
 - Accelerated renewable energy development
 - Demand-response programs to shift energy use
 - Grid modernization tools like digital twins and real-time load balancing
 - Utility partnerships or self-generation by data centers to reduce grid strain

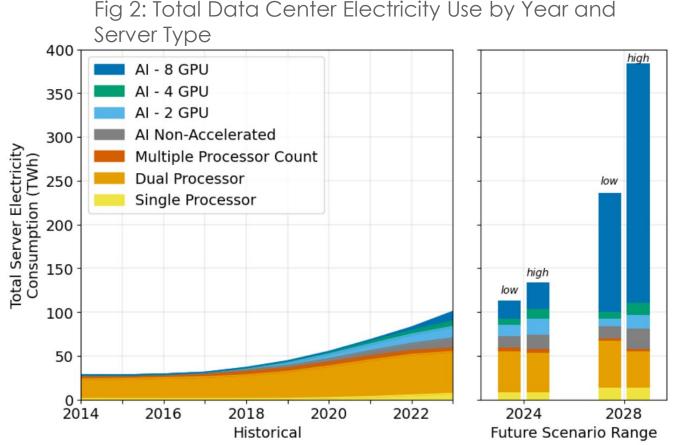

Data Center Electricity Demand – A National Perspective

Data centers are driving historic electricity demand across the U.S., with some states projected to exceed 20% of total consumption by 2030—highlighting the urgency for proactive grid planning and ratepayer protection in New Mexico.

Fig 1: 2030 projected data center share of electricity consumption

*Assumes average of the four growth scenarios and that non-data center loads grow at 1% annually

Source: EPRI, Powering Intelligence Analyzing Artificial Intelligence and Data Center Energy Consumption



Data Center Electricity Demand Is Surging

Al Workloads Are Reshaping the Grid

Server energy use has tripled since 2014, with GPU-accelerated AI workloads now dominating growth.

- Server energy use grew from 30 TWh (2014) to 100 TWh (2023)
- GPU-accelerated Al servers jumped from
 TWh (2017) to >40 TWh (2023)
- EMNRD sees this as a strategic inflection point for energy policy and grid planning

Source: DOE, 2024 United States Data Center Energy Usage Report

ETA Compliance and Utility Challenges Understanding the Boundaries of the Energy Transition Act

- Behind-the-meter generation is not subject to ETA compliance
- Interconnected generation must comply with utility decarbonization targets (e.g., through the Renewable Portfolio Standard)
- This creates planning and compliance challenges for utilities facing multi-gigawatt load growth

Table 1: RPS Compliance Timeline by Utility Type (2020-2045)

Year	IOUs (e.g., PNM, SPS, EPE)	Co-ops (e.g., Kit Carson, Central NM Electric)	Munis (e.g., Farmington, Aztec)
2020	20% renewables	10% renewables	10% renewables
2025	40% renewables	15% renewables	15% renewables
2030	50% renewables	20% renewables	20% renewables
2040	80% renewables	50% renewables	50% renewables
2045	100% zero-carbon electricity	80% renewables	80% renewables

New Policy Development: Microgrids

Clarifying RPS Treatment Under HB 93 (2025)

Under HB 93 (2025), non-renewable energy from interconnected microgrids doesn't count toward the 2030 RPS target—it's deferred until 2035.

- 2025 HB 93 codified at NMSA 62-17-12
- Establishes a delayed compliance window of 2035 (instead of 2030) for energy from interconnected microgrids*
- Applies to projects over 20MW (about 16,500 average U.S. homes)

Implications for Utilities and Developers

- Utilities must meet 2030 RPS targets without relying on non-renewable microgrid generation
- May affect resource planning, procurement strategies, and interconnection decisions
- EMNRD encourages early coordination to align microgrid deployment with long-term decarbonization goals

*Provisions in HB 93 only apply if the microgrid interconnects with a utility regulated by the ETA.

Leveraging Data Centers to Accelerate Clean Energy

When structured thoughtfully, hyperscale data centers offer stable demand, premium payments, and long-term contracts that can accelerate renewable energy development, modernize the grid, and reduce costs for other ratepayers.

Simplified Benefits Framework

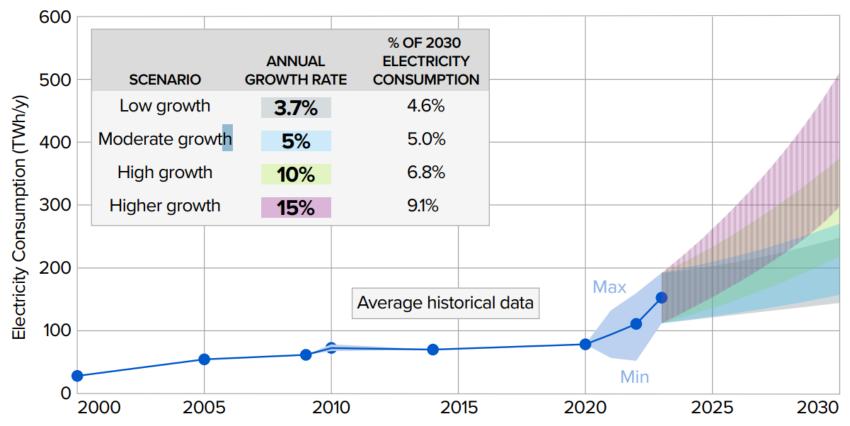
- <u>Anchor Customers</u>: Stable demand supports utility-scale renewables
- Green Premiums: Above-market payments can offset ratepayer costs and provide funding for grid modernization and batteries.
- Long-Term PPAs: De-risk investment and attract private capital
- Grid Reliability: Data centers can help fund transmission, smart grid tech, and flexible load management

Projections of Potential Power Consumption in NM

Table 3 presents a view of the energy consumption from data centers in NM. These projections are categorized into three scenarios: low growth, moderate growth, high growth, and higher growth

Table 2: Projections to 2030 of potential power consumption for states with significant data center load in 2023

FORECASTED SCENARIOS: PROJECTIONS OF POTENTIAL POWER CONSUMPTION BY STATE (2023–2030)										
2023 Load		Low-growth Scenario (3.71%)		Moderate-growth Scenario (5%)		High-growth Scenario (10%)		Higher-growth Scenario (15%)		
		% of To- tal State		% of To- tal State		% of To- tal State		% of To- tal State		% of To- tal State
		Electric-		Electric-		Electric-		Electric-		Electric-
		ity Con- sumed		ity Con- sumed		ity Con- sumed		ity Con- sumed		ity Con- sumed
STATE	MWh/y	(%EC)	MWh/y	(%EC)	MWh/y	(%EC)	MWh/y	(%EC)	MWh/y	(%EC)
New Mexico	402,960	1.48%	520,004	1.78%	567,005	1.94%	785,255	2.66%	1,069,926	3.60%



Source: EPRI, Powering Intelligence Analyzing Artificial Intelligence and Data Center Energy Consumption *percentage of state electricity demand (%EC)

Projections of Potential Power Consumption in NM - Assumptions

- Developed by EPRI using public data, industry forecasts, and historical trends
- Reflects uncertainty in AI model proliferation, internet traffic, storage demand, and efficiency gains
- Assumes 1% annual growth in non-data center electricity demand

Fig 3: Projections of potential power consumption in U.S. Data Center scenarios, 2023-2030

Projections of Potential Power Consumption in NM - Assumptions

- Growth projections reflect current usage, technological trends, and expert insights
- Key drivers—Al demand, hardware evolution, and operational standards—are rapidly changing
- Load forecasts are bounded estimates, not fixed predictions

Table 3. Forecasted load projections: Parameters of power consumption in each of the four U.S. data center scenarios, 2022-2030

COMPOSITION OF GROWTH SCENARIOS (2023—2030)								
GROWTH SCENARIO	CAGR (%)	AVERAGE 2023 DATA CENTER LOAD (MWH)	AVERAGE PROJECTED LOAD, 2030 (MWH)	CHANGE IN GROWTH (Δ)				
Higher Growth	15%	152,120,846	403,906,136	166%				
High Growth	10%	152,120,846	296,440,493	95%				
Moderate Growth	5%	152,120,846	214,049,306	41%				
Low Growth	3.7%	152,120,846	196,305,818	29%				

Source: EPRI, Powering Intelligence Analyzing Artificial Intelligence and Data Center Energy Consumption *compound annual growth rate (CAGR)

