

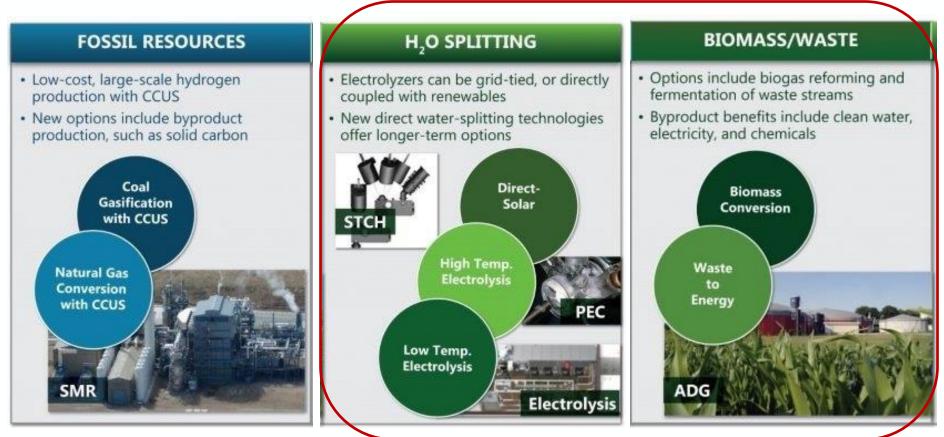
Water Research and Economic Development Using Green Hydrogen

Pei Xu Department of Civil Engineering

Legislative Finance Committee June 24, 2025

BE BOLD. Shape the Future.[®] **New Mexico State University**

H₂ as a Clean Energy Source to Promote Economic Growth


Potential

- 10 MMT of H₂/yr produced today with scenarios for ~5X growth
- 10 MMT H₂ would ~ double today's solar or wind deployment
- Industry study shows potential for \$140B in revenue, 700K jobs, 16% GHG reduction. Analysis underway, including on export potential.


Source: U.S. Department of Energy

H₂ Production Technologies

CCUS: carbon capture, utilization and storage STCH: Solar thermochemical hydrogen

Challenges and Opportunities for Green H₂ Production

Challenge - Water Requirements for Electrolysis

- ~ 10 15 liters of water per kilogram of H_2 produced, including:
 - 9 liters of ultra-pure water for the electrolysis
 - Additional water for cooling, purification, and system losses, depending on the process.
- To support a 1 MW water electrolysis plant, water demand is estimated at 1900 – 2800 gallons per day

Opportunities – Alternative Water

Municipal wastewater, brackish water, and industrial wastewater

Challenges and Opportunities for Green H₂ Production

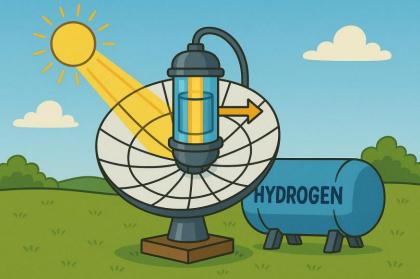
Challenge – Power Requirements for Electrolysis

• A 1 MW electrolyzer plant for H_2 production requires approximately 50-55 kWh of electricity to produce 1 kg of H_2 , with a typical system efficiency around 70-80%.

Opportunities – Renewable Energy

- Solar
- Wind
- Hydro
- Hybrid (PV+wind+hydro for stable operation)

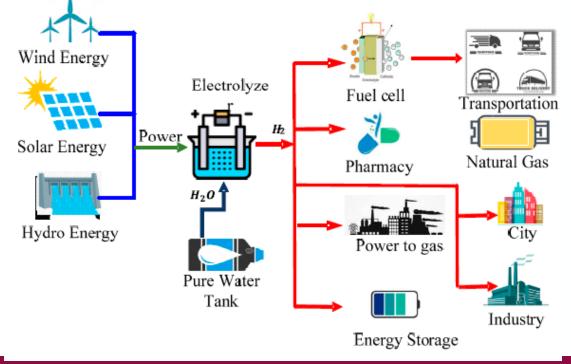
R&D at NMSU for Green H₂ Production


- Collaboration with Kit Carson to identify potential water supplies and treatment processes
- Collaborate with Plug Power on evaluating and testing alternative waters for green H_2 production

R&D at NMSU for Green H₂ Production

- Funded by the New Mexico Economic Development Department, NMSU collaborates with Global Impact Ventures (GIVE) and NM local companies to pilot and demonstrate a photocatalytic water splitting technology for H₂ production using solar energy and alternative water.
- Simultaneous H₂ production and water treatment and recovery

R&D at NMSU for Green H₂ Production


- Patented Green H_2 production technologies developed at NMSU
- Photocatalytic water splitting for H₂ production using wastewater, brackish water, seawater, and produced water
- Photoreforming plastic waste for H₂ production
- Cost ~ $$1.1-1.5/kg H_2$, meeting DOE target cost of $$2/kg H_2$ in 2025, and working towards $$1/kg H_2$ in 2030

R&D at NMSU: Green H₂-based Microgrid

- Renewable Power Input: Wind, solar, and hydro generate clean electricity.
- Green H₂ Production: electrolyzer, photo-water splitting, plastic photoreforming
- H₂ Utilization:
 - **Store** for energy buffering.
 - Convert to electricity via a fuel cell for further use.
 - **Direct use** for transportation, chemical manufacturing, and industrial processes

Source: Alzahrani, Ahmad, et al. "A review on hydrogen-based hybrid microgrid system: Topologies for hydrogen energy storage, integration, and energy management with solar and wind energy." *Energies* 15.21 (2022): 7979.

- Developing green H₂ in New Mexico offers several strategic, environmental, and economic benefits:
 - Abundant renewable resources
 - Economic development & jobs
 - Long-duration storage: stores excess renewable energy for extended periods.
 - Zero emissions: clean power generation with no GHGs or pollutants.
 - Versatile energy: provides electricity, heat, and fuel for transport/industry.
 - Reduces reliance on fossil fuels and centralized grid.
- The cutting-edge R&D at NMSU supports green H₂ development:
 - Using alternative water supplies and waste streams (e.g., plastics) for $\rm H_2$ production
 - Improving efficiency and reducing costs
 - Addressing infrastructure gaps and safety concerns: H₂ production, storage, and distribution networks.
 - Informing regulatory & policy: evolving frameworks for H₂ production, integration and microgrid operation.

Contact

Dr. Pei Xu, Professor in Civil Engineering Department:

Email: pxu@nmsu.edu

Dr. Huiyao Wang, Professor in Civil Engineering Department:

Email: huiyao@nmsu.edu

Dr. Di Shi, Associate Professor in the Electrical & Computer Engineering Department: Email: dshi@nmsu.edu

Dr. Patricia Sullivan, Associate Dean of the College of Engineering:

Email: patsulli@nmsu.edu

