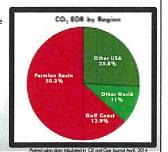

OUTLINE

- 1. A brief history of CO₂ Enhanced Oil Recovery (EOR)
- 2. Carbon Capture and Storage (CCS) vs utilization (CCUS)
- 3. Case Studies of Carbon capture and utilization for EOR
- 4. Southwest Partnership demonstration at Farnsworth unit
 - a) Introduction to Farnsworth
 - b) Characterization of the reservoir and seals
 - c) Models and Simulation
 - d) Manitoring, Verification and Accounting (carbon storage security)
- 5. Final thoughts and takeaways

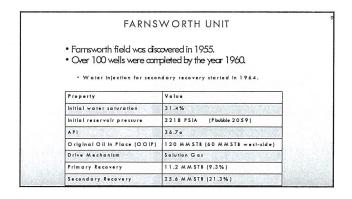

CO2EOR PROJECTS

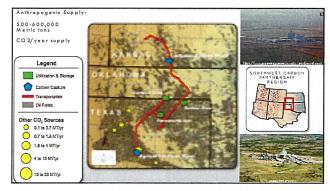
- First CO₂ EOR project started in 1972 at SACROC unit in Texas
- Since then 154 additional projects have been emplaced, initially in the Permian basin and Gulf coast areas of the United States
- Availability of Natural CO₂ Carbon capture has enabled additional projects in the USA and the World

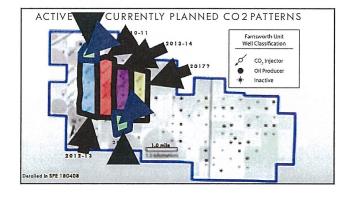
CARBON CAPTURE, (UTILIZATION) AND STORAGE

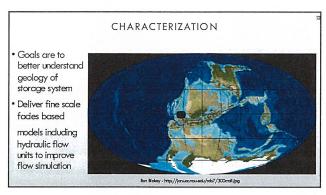
- Concerns over CO2 in the atmosphere is prompting governments to investigate CCS/CCUS
- For large point sources (coal plants) looking at saline aquifers
- ${}^{\bullet}$ For smaller point sources use for EOR is growing due to:
 • Proximity to mature fields
- Purity of CO2
- · Existing ail field infrastructure

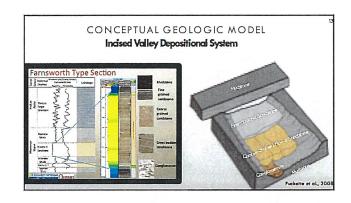
IMPLICATIONS OF ANTHROPOGENIC CO2FOR EOR

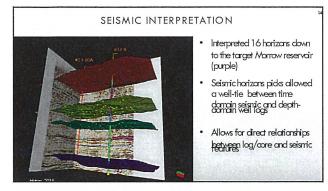

- Governmental Impacts
 - Tax area its/carbon area its
- Faster path to sequestration due to profit potential
- Impacts for Producing Companies:
 - · Lacal supply: Sources near every oil field
 - Increased recovery: \sim 2/3 of all all world-wide is stranded
 - Mitigate regulatory impacts
 - Market advantagesPublic perception

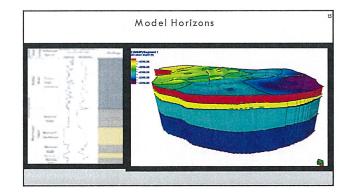

USA CASE STUDIES FOR CCS

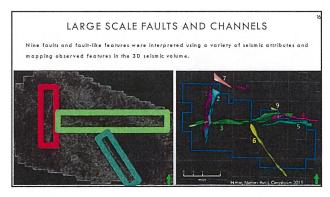

- US Department of Energy Regional Carbon Sequestration **Partnerships**
 - · Seven regional partnerships
- Each demonstrating injection of at least 1,000,000 metric tons of CO2
- Four projects are demonstrating
- storage in conjunction with EOR

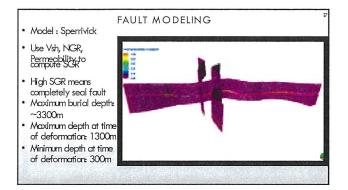

 Developing "best practices" for utilizing captured CO2

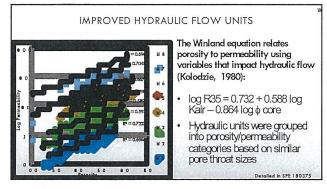


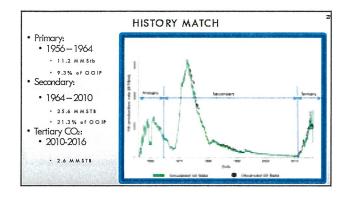


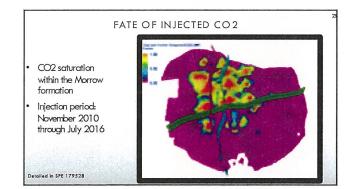


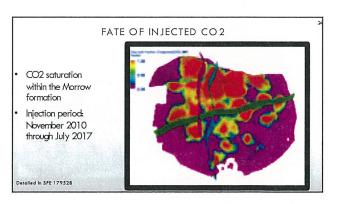









SWP evaluates and updates fine-scale geologic models yearly Gallis to integrate, and honor, seismic and well data Indudes fault planes picked from seismic Faults impact reservoir properties Faults impact reservoir


Data Available Fluid composition sampled @ 1956 Experimental Data Saturation Pressure Experiment Constant Mass Expansion at 168 ° F Differential Liberation 1 at 168 ° F Multi Stage Separator Test

SIMULATION STUDIES

- Reservoir production history matching through primary, secondary, and tertiary recovery.
- Carbon dioxide interactions with reservoir minerals and fluids
- Predictions of future production and carbon dioxide storage in the reservoir.
- Enhanced oil recovery and carbon dioxide storage with coupled geochemistry and geomechanics.
- Reduced order models for risk assessment and optimization.

DIRECT MONITORING STRATEGY

Detecting CO₂ at Surface:

- Surface soil CO 2 flux
- Atmospheric CO 2/CH 4 eddy flux
 G as phase tracers

Detecting CO₂ and/or other fluid migration in Target/Non-Target Reservoirs:

- Groundwater chemistry (USD ♥■)
 Water/gas phase tracers Tracking CO₂ Migration and Fate:
- · In situ pressure & temperature · 2D/3D seismic reflection surveys
- VSP and Cross-well seismic
 Passive seismic

CONCLUSIONS

- Demand for CO_2 for EOR projects has outpaced natural supplies Carbon Capture can mitigate CO_2 emissions using geologic storage and is responsive to government interests in reducing carbon emissions, worldwide
- Costs for using anthropogenic CO₂ for EOR purposes is mitigated by existing oilfield infrastructure and increased oil production
- Case studies can provide "best practices" and demonstrate viability of the use of local anthropogenic sources
- ${}^{\bullet}$ The Farnsworth project highlights enhanced recovery with ${\sim}92\%$ carbon
- Extensive characterization, modeling, simulation, and monitoring studies have demonstrated long term storage security