Western Midstream®

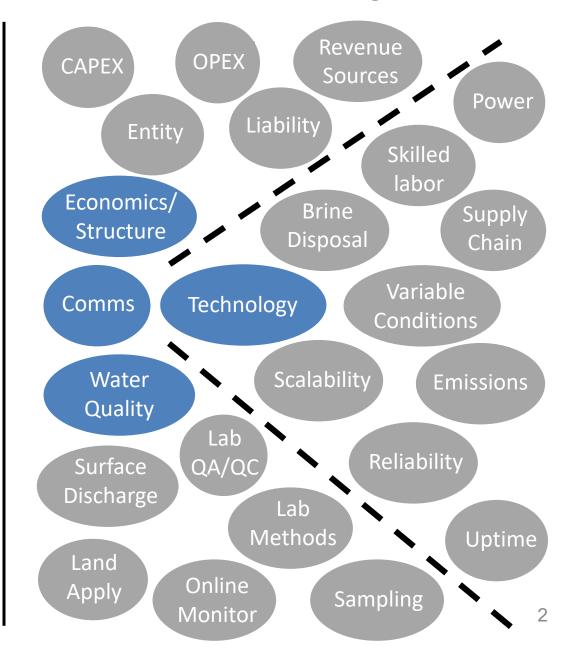
Water and Natural Resources Committee Meeting:

A Comprehensive Approach to Beneficial Reuse

October 29th-30th 2025

What is the depth and breadth of beneficial reuse testing?

Joint Industry Project (JIP)


- Western Midstream (recently acquired Aris Water Solutions)
 has assembled a team of world class water treatment experts
- Partnered with Chevron, Conoco, Coterra, and Exxon
- Engaged with communities, regulators, and academia

JIP1 Evaluation – Key Accomplishments

- Piloted over 24 months to determine best available tech
- Demonstrated water quality during all seasons & all conditions,
 while treating water directly off the pipeline (>50,000 data pts)
- Collected extensive operating data and lessons learned
- Established viable baseline economics

JIP2 Demonstration to Commercial Scale

- Refine/optimize quality, uptime, reliability, & treatment costs
- Continue to evaluate brine disposal and online monitoring
- Advance options for clean water including two-year irrigation study, surface discharge, and industrial use
- Executing initial FEED study to capture full investment

How do we create clean water from produced water?

Main Treatment Steps

Pre-treatment

3-5 Barriers of Protection

Desalination

1-3 Barriers of Protection

Post-treatment

3-5 Barriers of Protection

Contaminant Removal

Pre-treatment

Solids, organics, iron, dissolved gases, manganese

Desalination

Salts, boron, NORM, ammonia

Post-treatment

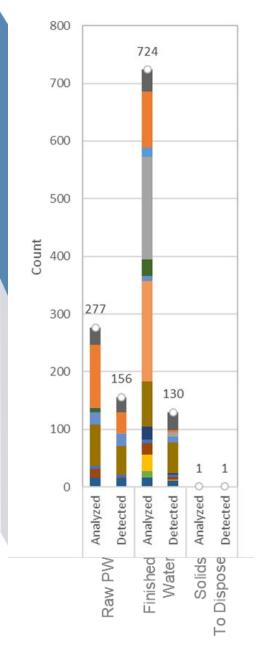
Organics, ammonia, finishing pH & hardness

How do we construct a reliable treatment system?

Utilize proven technologies

 Over 90% of technologies in the treatment train are proven at large scale

Eliminate single-point failure


 Each contaminant is removed through multiple barriers

Conduct extended piloting

- Learn potential failure points to build in redundancy where needed
- Design to recycle water if it is off-spec

Barriers of Protection	Ammonia	Boron	ВТЕХ	Chloride	Low MW Polar Organics	NORM	O&G/HEM	Total Dissolved Solids	Total Organic Carbon	Total Suspended Solids/Turbidity
Weir Tanks							✓		√	√
Flotation			✓			✓	✓		✓	✓
Coarse Filtration			✓				✓		✓	✓
Fine Filtration			√				✓		✓	✓
Decarbonation			✓		✓					
Membrane Desalination	///	///		///	///	///	///	///	///	///
Advanced Oxidation			✓						✓	
Activated Carbon			✓		✓	✓	✓		✓	✓
Ammonia Polisher	✓		✓							√
Ammonia Stripper	✓									
Total Barriers	5	3	7	3	5	5	8	3	9	9

How do we determine treated water quality?

Direct Testing

- Over 700 compounds tested
- 130 compounds detected in the clean water
- All were within surface discharge limits

Indirect Testing

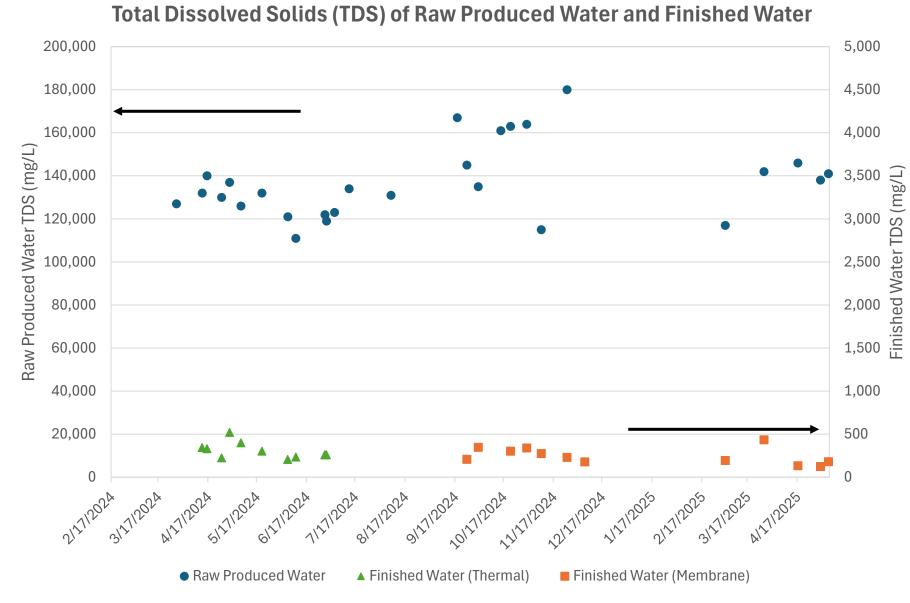
- Whole Effluent Toxicity (acute and chronic) – consistently passed after adjusting hardness
- Non-Targeted Analysis tells us what else might be in the water

■ Anions	■ Chlorinated Herbicides
■ Organochlorine Pesticides	■ Metals and metalloids
■ SVOCs	■ SVOC-Explosives
Dioxins	Organic Acids
■ Polychlorinated biphenyls (PCBs)	■ Radionuclides
■ VOCs	■ Wet Chemistry
■ Organic O&G TPH and TOX	
■ Rare Earth Metals	
O Total	

Major Compounds	Units	Membrane Avg. ¹	Surface Discharge
Ammonia	mg/L	0.14	<0.5 mg/L
Benzene	ug/L	<0.46	<5.0 ug/L
Boron ²	mg/L	2.51	<5 mg/L (EPA)
Bromate	ug/L	<5.00	<10.0 ug/L
BTEX	ug/L	<2.56	-
Chlorides	mg/L	41.5	<100 mg/L
Dissolved Oxygen	mg/L	9.19	>5 mg/L
Low MW Polar Organics	mg/L	-	Compound specific
NORM	pCi/L	0.75	<5 pCi/L (Radium 226/228)
рН	SU	8.01	6.5-8.5
Salinity	mg/L	210	<250-500 mg/L

- 1. The Kaplan-Meier (KM) method was used for samples with BDL results
- 2. After adding the Boron IX/Boron RO, the average concentration in the finished water was <1.0 mg/L.

What are the "unknowns" and how are they removed?


Chemicals are added in the hydraulic fracturing process

- Type and amount vary by operator
- We know the chemical classes that are added
- An effective approach is to use non-targeted analysis to look for chemicals in those classes
- Non-targeted analysis identified several downhole chemicals
 - Raw water concentrations were all at the microgram per liter level
- The multi-barrier approach is effective at removal
 - All chemicals were removed to below detection limits and/or to safe levels

Downhole Chemical Classes	Barriers of Protection
Acids	3
Biocides	6
Clay Stabilizers	3
Corrosion Inhibitors	6
Crosslinkers	3
Emulsion Breakers	3
Friction Reducers	5
Gelling Agents	5
Iron Control	3
pH Adjusting Agents	3
Proppant	3
Scale Inhibitors	3
Surfactants	6

Identified Compounds	Units	Chemical Class	Avg. Raw Produced Water ¹	Membrane Finished Water ¹
Polyethylene Glycols	ug/L		50.1	<0.2
Polypropylene Glycols	ug/L	Clay Stabilizers,	0.324	<0.2
Polyethylene Glycol Carboxylates	ug/L	Friction Reducers, Surfactants	1.78	<0.2
Linear Alkyl Ethoxylates	ug/L		1.00	<0.2
Benzylalkonium Chloride-C12	ug/L	Biocides,	99.5	<0.1 / 0.3
Benzylalkonium Chloride-C14	ug/L	Surfactants	17.0	<0.1
Nonylphenol Ethoxylates	ug/L	Emulsion Breakers, Surfactants	1.92	<0.2
1-Docosanamine	ug/L		11.8	<0.1
Olefinic Amines	-	Corrosion Inhibitors, Surfactants	Detect	Non-Detect
Aliphatic Amines	-	Sarradanto	Detect	Non-Detect

How do we know if the treated water quality is stable?

During >24 months of piloting testing:

- We tested water directly off the pipeline utilizing 24/7 operations
- The feed salt level varied from 110,000 ppm to 180,000 ppm
- Ambient temperature ranged from below freezing to over 100 F
- Wind events created substantial dust storms
- We were able to demonstrate consistent treated water quality
 - Measured via online monitoring and monthly third-party testing

How can we collaborate to make beneficial reuse a win-win-win?

Potential Impacts of Successful Beneficial Reuse

- Environment restore local ecosystems, surface flows, and aquifers
- Communities improve local water security and provide water for growth
- Industry reduce injection by ~50% along with seismicity/surface pressures and provide new water sources for new and existing users
- New Mexico improve state water security and provide water for new industry growth
- *United States* derisk geopolitical implications of the loss of energy independence

Potential Contributions of Key Stakeholders

- Oil & Gas Industry Continue to fund and provide expertise for reliable and compliant treatment of produced water
- Legislature/Regulators Provide a clear and timely pathway for regulated uses of treated produced water within the state
- NMPWRC/WATR Continue to provide a framework and science to support regulated use of treated produced water
- *NGOs* Help identify potential best uses for the treated water and collaborate on development of associated regulations and processes
- Communities Help identify how treated produced water can best support local communities and provide feedback with any concerns

