

Produced Water Characterization, Treatment, and Reuse

Pei Xu

Professor, Department of Civil Engineering Research Director, New Mexico Produced Water Research Consortium

Radioactive and Hazardous Materials Committee

October 10, 2023

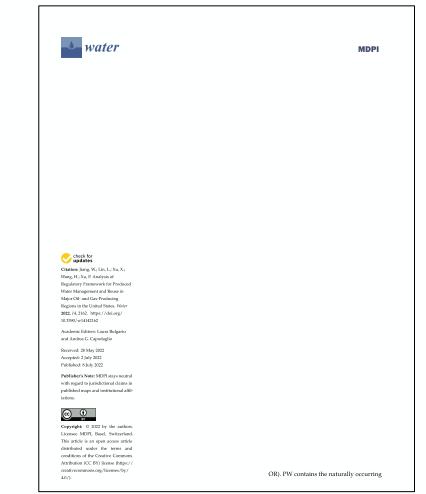
BE BOLD. Shape the Future.[®] **New Mexico State University**

NM Produced Water Research Consortium

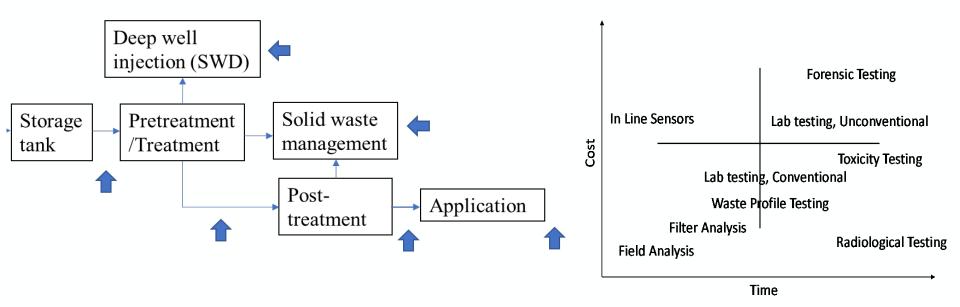
https://nmpwrc.nmsu.edu/

- Created under the New Mexico 2019 Produced Water Act
- The objectives of the Consortium are to:
 - Fill the scientific and technical gaps associated with treatment and reuse of produced water
 - Inform future development of science-based policies and regulations
 - Coordinate a robust education, outreach, research, and development program
 - Encourage water stewardship through produced water treatment and reuse:
 - Reduce/eliminate fresh water use in the oil and gas sector
 - Provide new water for economic development
 - Assure public and environmental health and safety using cost-effective treatment

Consortium – a public-private partnership with state and federal agencies, organizations of industry, NGOs, companies, national labs, and academia


Produced Water Characterization is Challenging

- Constituents of concern in produced water (formation water and flowback water):
 - Suspended solids, oils, and grease
 - Salts (referred to as dissolved solids) and metals
 - Dissolved organics (e.g., petroleum hydrocarbons, volatile and semi-volatile compounds)
 - Dissolved gases (e.g., H₂S, NH₃)
 - Naturally occurring radioactive material (NORM)
 - Microorganisms
 - Chemical additives (well completion and on-going well maintenance)
 - Transformation/degradation products, and unknowns
- Produced water quality and quantity are highly variable, spatial and temporal
- High salinity and complex water chemistry cause challenges in analytical methods and treatment
- Costly and time-consuming for "comprehensive" analysis



What Constituents Should We Analyze? NPDES+ List

- Published in Water 2022, 14(14), 2162; <u>https://doi.org/10.3390/w14142162</u>
- Water quality standards for surface water discharge, land application, irrigation, wildlife and livestock watering, road application, dust control, and groundwater standards
- Developed a multi-tiered analytical approach with a comprehensive analytical list for characterization of physical, chemical, and biological properties of raw produced water and treated produced water using target and non-target analyses as well risks and toxicity assessment

The cost and turnaround time of produced water analysis

Level	Use	Parameters	Frequency	Sample
Tier 1	Continuous monitoring, bulk testing, rapid analysis, process control	Flow TSS/Turbidity TDS/EC TOC/DOC/COD pH ORP Iron (total, dissolved, Fe ²⁺) H ₂ S NH ₃ Alkalinity Hardness (total, dissolved) Specific gravity Percent Moisture Optional: UV-Vis, Fluorescence excitation-emission matrix (F-EEM)	Baseline, real- time, continuous, and routine	Feed/produced water Product water Brine

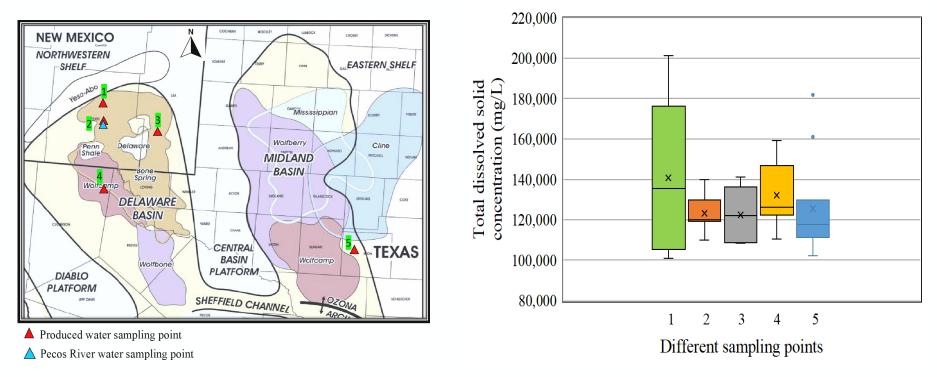
Level	Use	Parameters	Frequency	Sample
Tier 2	Detailed characterization, routine monitoring, and Tier 1 data verification	 Inorganics Metal elements (33), SW-864 6020A, dissolved, total Hg, SW- 846 7470 Anions (7), EPA 300 Radionuclides Radium 226, 228 Gross Alpha/Beta U 235, 236, 238 Strontium 90 	Baseline (at least once) Demonstrating treatment efficacy and reliability, beneficial reuse investigation	Feed/produced water Product water Brine

Level	Use	Parameters	Frequency	Sample
Tier 2	Detailed characterization, routine monitoring, and Tier 1 data verification	 Organics Oil and Grease GRO [C6-C10] by 8015D DRO [C10-C28] by 8015D MRO (C28-40) by 8015D VOCs SW-846 8260 (91) SVOC - General by 8270E (139) SVOC - General by 8270E (139) SVOC - TPH by 8015 (8) 1-2 samples for screening: VOC - TPH by 8015 SVOC - Explosives by 8330B SVOC - Agent Breakdown Products SVOC - Pesticides/Herbicides by 8081B SVOC - Polychlorinated biphenyls (PCBs) (8280A) SVOC - PaHs SVOC - Organic Acids by 8015D SVOC - Dioxins TOX by SW 846 9020 PFOA, PFOS & PFHxS by EPA 537.1 Modified 	Baseline (at least once), Demonstrating treatment efficacy and reliability, beneficial reuse investigation	Feed/ produced water Product water Brine

I	Level	Use	Parameters	Frequency	
	Tier 3	Risks and toxicology	WET Testing acute and chronic toxicity	Product water (at least once)	
Ì		assessment	HiRes LC-MS non-target screening		
		Fate/transport modeling.	Analysis of treated effluent on soil, plant, tissue samples		
	Гier 4	Waste and residual characterization	Mass balance	As needed	

Characterization of Produced Water in the Permian Basin

- Produced water quality is highly variable: by region, within an oil or gas play, with time
- Limited produced water quality data in existing database: primarily inorganic ions


	Permian	Wolfcamp	Delaware	Artesia	Yeso	Bone Spring	San Andres
	Basin	Formation	Formation	Formation	Formation	Formation	Formation
TDS	10,048-384,963/	12,136-249,459/	12,708-360,545/	10,050-384,963/	10,818-381,108/	10,048-255,451/	10,026-391,007/
(mg/L)	118,253	95,096	185,433	94,584	123,784	105,569	118,879
рН	0.5-11.7/6.8	4.5-8.6/7.0	4.8-8.9/6.9	4.6-9.7/7.1	0.5-8.8/6.7	6.3-7.1/6.8	0.6-11.7/6.9
Mg	3-27,910/	84-5,965/	3-10,800/	12-18,400/	12-18,980/	54.4-3396.6/	2.7-27,910/
(mg/L)	1,901	1,103	2,509	1,593	2,281	760	2,087
Ca	24-60,073/	211-40,800/	24-46,346/	87-25,315/	235-40,420/	174.5-21,720/	107-60,073/
(mg/L)	6,051	6,358	12,992	3,205	6,996	3347	6,952
Cl	40-245,700/	3,951-151,900/	2,460-225,612/	3,794-222,596/	2,350-237,245/	4,076-156,699/	40-245,700/
(mg/L)	71,224	56,362	113,116	56,580	74,606	60,184	70,738
Na	209-143,086/	2,625-54,068/	5,253-109,024/	209-128,175/	1,529-107,396/	1,982-80,469/	1,123-143,086/
(mg/L)	71,224	29,045	51,113	37,470	35,948	30,723	35,479
K	14-33,962/	97-742/	79-1,454/	65-4,620/	14-1,570/	109.8-1,232/	8-33,962/
(mg/L)	861	362	548	505	472	365	1,622
Sulfate	18-12,320/	84-12,080/	84-6,280/	18-11,900/	35-11,800/	111-5,250/	22.4-12,320/
(mg/L)	2,131	1,753	1,523	2,294	2,211	1,420	2,362
Br (mg/L)	10-1,064/ 430	10 - 756/ 390	NA	NA	240-963/ 481	152-1,065/ 382	17-517/ 153
HCO3	5-7,440/	5-4,204/	5-5,558/	9-7,440/	5-3,851/	5-891/	7-3,960/
(mg/L)	731	619	376	878	645	390	663
TOC (mg/L)	53-184/123	86-184/138	NA	NA	NA	119	NA

Characterization of Produced Water in the Permian Basin

Sampling points of 46 PW and 10 Pecos River water

TDS distribution of PW at different sampling points

Source: Jiang et al., JHM 2022, 430, 128409

Characterization of Produced Water in the Permian Basin

Targeted Chemical Analysis

More than 300 targeted analytes were quantitatively analyzed, including wet chemistry, inorganics, radionuclides, organics such as VOCs, SVOCs, total petroleum hydrocarbons, organic acids, oil and grease, pesticides/herbicides, dioxins, and tentatively identified compounds, and per- and polyfluoroalkyl substances (PFAS).

For 10 produced water samples collected in 2020, 91 analytes were quantified and 218 analytes were not detected (309 in total)

For 10 Pecos River samples collected in 2020, 67 analytes were quantified and 242 analytes were not detected (309 in total)

Source: Jiang et al., JHM 2022, 430, 128409

Statistical results of general quality parameters of the 46 PW samples collected from the Delaware and Midland Basins

		Mean	Max	Min	25th	50th	75th percentile
					percentile	percentile	
Alkalinity	mg/L as	272	870	100	128	207	336
	CaCO ₃						
Ammonia	mg/L	432	750	320	330	400	495
COD	mg/L	1,626	3,100	930	1,250	1,400	1,950
рН	SU	6.6	8.1	3.9	6.3	6.7	7.0
TDS	mg/L	128,641	201,474	100,830	113,441	122,280	134,525
тос	mg/L	103.5	248.1	2.4	28	90.6	173.3
TSS	mg/L	342.9	790	85	142.5	375	422.5
Turbidity	NTU	116.4	200	23	36	110	200
MBAS	mg/L	1.10	2.1	0.047	0.92	0.97	1.33

Source: Jiang et al., JHM 2022, 430, 128409

Produced Water		Average	Max	Min
Radionuclide				
Gross Alpha	pCi/L	1105.6	1630	660
Gross Beta	pCi/L	874.6	1230	456
Radium-226	pCi/L	43.92	111	0.736
Radium-228	pCi/L	151.27	291	2.56

Water quality of Pecos River water samples		Average	Max	Min	Drinking water standards
Radionuclide					
Gross Alpha	pCi/L	24.6	39.8	7.7	15
Gross Beta	pCi/L	14.1	24.2	1.4	4 millirems per year
Radium-226	pCi/L	3.56	29.9	0.1	5 pCi/L for
Radium-228	pCi/L	0.42	0.8	0.2	Combined Ra226/228

Produced Water VOCs		Average	Max	Min
Benzene	mg/L	2.61	4.90	1.90
Ethylbenzene	mg/L	0.11	0.16	0.07
Toluene	mg/L	2.53	3.70	1.70
Xylenes, Total	mg/L	1.19	1.60	0.71

No VOCs detected in Pecos River (9 samples)

Produced Water		Average	Max	Min
Oil and Others				
Diesel Range Organics (C10-C20)	ug/L	45,750	130,000	22,000
Gasoline Range Organics [C6 - C10]	ug/L	21,625	46,000	13,000
Motor oil/lube range organics (MRO) (C20-C34)	ug/L	32,444	97,000	12,000
Tributyl phosphate	ug/L	34.6	74	3.3
Tentatively Identified Compound	ug/L	531	1000	280
Pecos River water samples		Average	Max	Min
Oil and Others				
Gasoline Range Organics [C6 - C10]	ug/L		54	ND
Motor oil/lube range organics (MRO) (C20-C34)	ug/L	230	310	180
Tributyl phosphate	ug/L	3.6	5.7	1.7
Tentatively Identified Compound	ug/L	-	55	-
BEBOLD Shape the Eur		NEW WIEXICO PR	ODUCED WATER RES	SEARCH CONSORTION

BE BOLD. Shape the Future.[®]

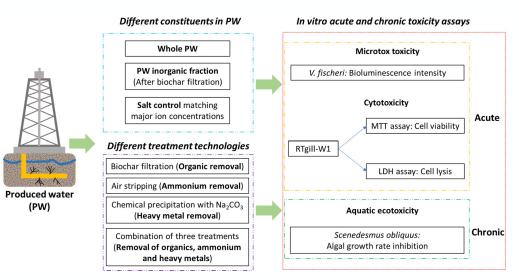
Source: Jiang et al., JHM 2022, 430, 128409

Produced water		Average	Max	Min
Organic - SVOC - General		Average	Max	min
1,1'-Biphenyl	ug/L	5.9	8.5	3.8
1,4-Dioxane	ug/L		21	ND
1-Methylnaphthalene	ug/L	23	36	15
2-Methylnaphthalene	ug/L	38	65	26
2-Methylphenol	ug/L	82	98	68
2,4-Dimethylphenol	ug/L	34	42	29
Ethylene glycol	mg/L		27	ND
Methylphenol, 3 & 4	ug/L	90	110	72
Phenol	ug/L	203	250	170
Pyridine	ug/L	238	300	120

Not detected in Pecos River (9 samples)

Produced Water			Aver	age	Max	Min
Organic - SVOC - Pestic	ides/Herbicides					
alpha-BHC		ug/L	0.0	18	0.027	0.0088
Endosulfan I		ug/L	0.8	55	0.98	0.73
Endrin		ug/L			0.0038	ND
Pecos River water			Aver	age	Max	Min
Organic - SVOC - Pestic	ides/Herbicides					
Endosulfan I		ug/L	0.00	405	0.0042	0.0039
4,4'-DDD		ug/L			0.01	ND
4,4'-DDT		ug/L			0.0057	ND
	Produced Water			Average	e Max	Min
	Organic - SVOC -	PAH				
	Anthracene		ug/L		1.1	ND
	Naphthalene		ug/L	15.44	24	11
	Phenanthrene		ug/L	3.76	6.6	2.7
	Fluorene		ug/L	4.35	5.6	3.1

Pecos River water		Average	Max	Min
Organic - SVOC - PAH				
Naphthalene	ug/L		6	ND
Fluorene	ug/L		1.2	ND


	PW/	PW	Pecos		PW/	PW	Pecos
	Pecos	MDL/RL	MDL/RL		Pecos	MDL/RL	MDL/RL
PFBS	0.17 J/2.0	0.15/1.5	0.16/1.6	PFNS	ND/ND	0.12/1.5	0.13/1.6
PFBA	0.31 J B/ 1.3 J B	0.25/1.5	0.28/1.6	PFNA	ND/ND	0.2/1.5	0.21/1.6
PFDS	ND/ND	0.23/1.5	0.25/1.6	FOSA	ND/ 0.54 J B	0.25/1.5	0.28/1.6
PFDA	ND/ND	0.23/1.5	0.24/1.6	PFOS	ND/1.2 J	0.39/1.5	0.42/1.6
PFDoS	ND/ND	0.33/1.6	0.35/1.6	PFOA	ND/1.0 J	0.62/1.5	0.67/1.6
PFDoA	ND/ND	0.4/1.6	0.43/1.6	PFPeS	ND/0.24 J	0.22/1.5	0.24/1.6
PFHpS	ND/ND	0.14/1.6	0.15/1.6	PFPeA	ND/1.8	0.36/1.5	0.39/1.6
PFHpA	ND/0.35 J	0.18/1.5	0.2/1.6	PFTeA	0.24 J/ND	0.21/1.5	0.23/1.6
PFHxS	0.25 J B/ 1.0 J B	0.12/1.5	0.13/1.6	PFTriA	ND/ND	0.94/1.5	1/1.6
PFHxA	ND /1.2 J	0.42/1.5	0.46/1.6	PFUnA	ND/ND	0.8/1.5	0.87/1.6
NEtFOSA	ND/ND	0.63/1.5	0.68/1.6	NMeFOSA	ND/ND	0.31/1.5	0.34/1.6
NEtFOSE	0.98 J/ND	0.62/1.5	0.67/1.6	NMeFOSAA	ND/ND	2.3/15	2.4/16
NEtFOSAA	ND/ND	1.4/15	1.5/16	NMeFOSE	ND/ND	1/2.9	1.1/3.1
4:2 FTS	ND/ND	3.8/15		6:2 FTS	ND/ND	1.5/15	
8:2 FTS	ND/ND	1.5/15		10:2 FTS	ND/ND	0.14/1.5	
DONA	ND/ND	0.13/1.5		HFPO-DA (GenX)	ND/ND	1.1/2.9	
F-53B Major	ND/ND	0.17/1.5		F-53B Minor	ND/ND	0.23/1.5	

Preliminary PFAS Results of 1 Produced Water Sample (5/34 detected) and 1 Pecos River Sample (10/34 compounds detected)

Toxicological Characterization of Produced Water from the Permian Basin

- PW toxicity was studied using in vitro toxicity assays using various aquatic organisms (luminescent bacterium , fish gill cell line RTgill-W1, and microalgae).
- High salinity was the foremost toxicological driver in PW, followed by organic contaminants.
- Treatment required to reduce toxicity:
 - Salts Desalination
 - Organic removal
 - Ammonia removal
 - Heavy metals removal

Source: Hu et al., Sci. Total Environ 2022, 815, 152943

Major Focus: State-of-the-Art Risk and Toxicology Testing

Standardized:

- Standardized Sampling Protocol w/USEPA by NMSU
- NPDES+ Analysis (300 Constituents)
 - Certified Lab, NMSU, and USEPA
- TIC/Unknown Analysis HR-LCMS @ NMSU
- Whole Effluent Toxicity Testing
 - Certified lab and NMSU
- Human cell-line analysis
 - USEPA and NMSU
- State of the Art Risk and Tox Analysis
 - Predicted Env. Conc. (PEC)
 - Predicted No-effect Conc (PNEC) supported and coordinated by ExMo and UofDE

Challenges:

- TIC/Unknown analysis of raw PW difficult for HR-LCMS
- Need to develop advanced analytical tools and risk assessment methods to evaluate the impact on environmental and public health
- High analytical costs

Summary

- Provide data, information, and knowledge to assist in developing science-based regulations for fit-for-purpose reuse of treated produced water
- Improve characterization of physical, chemical, microbiological, and environmental toxicity analysis of produced water and treated produced wate
- Evaluate integrated treatment systems including pretreatment, treatment/desalination, and post-treatment for fit-for-purpose applications
- Evaluate economic, social, and environmental risks/benefits of produced water reuse
- Developed foundational documents such as produced water research roadmaps and gaps Analysis, research plan, testing guidance and protocols
- Published >20 journal papers on produced water characterization, treatment, and regulations
- Collaborate extensively with federal, state, industry, NGOs, TX and CO Consortiums, and other stakeholders

Contact Information

Pei Xu

Department of Civil Engineering

New Mexico Produced Water Research Consortium

https://nmpwrc.nmsu.edu, google - nmpwrc

575-646-5870

pxu@nmsu.edu

