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Goal 1: Mitigate grid caused wildfires

Goal 2: Mitigate consequence from wildfire to grid
and critical infrastructure

" WILDFIRE AND THI
ELECTRIC GRID NEXL




Oregon

® Buzzard Complex in 2014: Nearly
W I L D F I R E | M PACTS 400,000 acres burned, costing
$11 million, caused by lightning
(14 July to 11 Sep)

Im paCtS to soci ety, prope rty, and California
/OSS Of /Ife @ Dixie Fire, 2021: Second-largest, nearly

0.97 million acres burned, $637 million

Damage to critical infrastructure {37 tass, oy poae powertine
@ August Complex, 2020: The largest

BUS|neSS |mpaCtS (Utlllty bUSIneSS wildfire, nearly 1.03 million acres burned,

$116 million cost, 1 death, caused by

Im paCtS) lightning (17 Aug to 11 Nov)
. . @ Camp Fire, 2018: Deadliest and most
Su pp Iy chainim pacts for destructive, 154,000 acres burned,
. $120 million cost, 85 deaths, caused
replacement infrastructure by PG&E power line (8-25Nov)
@ Mendocino Complex, 2018: Largest in L
state history until the Dixie Fire in 2021,
l nsurance 459,000 acres burned, $220 million cost,
H 1 death, caused by a hammer spark and
LaWSU |tS under investigation (27 July to 18 Sep)
® Thomas Fire, 2017: Seventh-most
an d MucC h more destructive, 270,000 acres burned,

$124 million cost, 23 deaths, caused
by downed power lines from Southern
California Edison (4 Dec 2017 to 12 Jan

—Washington

@ Okanogan Complex, 2015: Largest wildfire
on record, 304,000 acres burned, 3 deaths,
120 homes destroyed, $44.5 million cost, caused
by lightning (15 Aug to 19 Sep)

@ Carlton Complex, 2014: Nearly 260,000 acres
burned, 2 deaths, $68 million cost, caused by
lightning (14 July to 28 Sep)

— Nevada

@ Martin Fire, 2018: Largest in Nevada's history,
436,000 acres burned, $10 million cost, caused
by human activity (5-21 July)

South Dakota

@ Legion Lake Fire, 2017: Third-largest in
state history, nearly 54,000 acres
burned, $2.2 million cost, 2 deaths,
caused by a tree falling on a Black Hills
Energy power line 11-13 Dec)

—— Colorado

@ Marshall Fire, 2021: Most destructive
in terms of buildings destroyed, about
6,000 acres burned, 2 deaths,
$2 million cost, cause unknown
(30 Dec 2021 to 1 Jan 2022)

® Cameron Peak Fire, 2020: Largest
wildfire in state history, about 209,000
acres burned, $133 million cost, cause
unknown (13 Aug to 4 Dec)

@ Spring Creek Fire, 2018: Third-largest
in state history, about 108,000 acres
burned, $35 million cost, caused by
human activity (27 June to 6 Dec)

Oklahoma and Kansas

® Northwest Oklahoma Complex, 2017:

Impacted parts of Kansas and Oklahoma,
largest wildfire in Kansas history, nearly

Lawsuits: hundreds of millions for 2018)
wildfire impacts. For example:
. Hawaii

. 2017 Thomas Fire, @ Hawaii fires, 2023: Deadliest US wildfire in
. 2018 Camp Fire over a century, nearly 17,000 acres burned,

. ! . 101 deaths, $5.5 million cost, possibly caused
¢ 2020 Archie Creek Fire, by downed power lines, exacerbated by dry
. 2020 Zogg Fire, conditions and high winds (14 June to 6 Aug)

e« 2021 Dixie Fire.

Percentage of
wildfires

Soroush Vahedi, Junbo Zhao, Brian J. Pierre. by cause

Key Wildfire Events in the U.S. (2014-2024). Data @ Lightning

collected from the Annual National Climate Report (2014- @ Power lines

2023) by the National Centers for Environmental

Information and the Wildland Fire Summary and Statistics © Human 26%

Annual Report (2014-2023) by the National Interagency @ Unknown °

Coordination Center.
*this slide may not have the most up to date information.

POC: Dr. Brian J. Pierre

Alaska |

@ Lime Complex Fire, 2022: Nearly 865,000 acres
burned, $12 million cost, caused by lightning
(15 June to 26 July)

® Old Grouch Top Fire, 2019: Nearly 307,000 acres
burned, $61,000 cost, caused by lightning
(5 June to 1 Aug)

@ Ruby Area Fires, 2015: Nearly 422,000 acres burned,
$2 million cost, caused by lightning (2 June to 4 Aug)

@ Tanana Area Fires, 2015: Nearly 500,000 acres
burned, $14 million cost, caused by lightning
(14 June to 6 Aug)

800,000 acres burned,

6 deaths, thousands of cattle killed,
$3.2 million cost, cause unknown
(7 March to 24 April)

@ Anderson Creek Fire, 2016: Impacted
parts of Kansas and Oklahoma, the
second-largest wildfire in Kansas, nearly
370,000 acres burned, $1.75 million cost,
sparked by a vehicle (23 March to 4 April)

—— New Mexico

@ Hermits Peak Fire, 2022: Largest and most
destructive wildfire in state history, nearly
342,000 acres burned, $330 million cost,
caused by human activity (7 April to 20 Oct)

@ Black Fire, 2022: Second-largest fire, nearly
325,000 acres burned, $60,000 cost,
caused by human activity
(13 May 10 Nov)

Texas

® Smokehouse Creek Fire, 2024: Largest
wildfire in Texas history, nearly 1 million
acres burned, $4.6 million cost, 2 deaths,
caused by downed power lines
(26 Feb to 14 March) 3



WILDFIRE ELECTRIC GRID SECURITY PROGRAM

Mitigating Electric Grid Initiated Wildfires and
Protecting our Critical Infrastructure from Wildfires

Pre-Fire During Fire Post-Fire Plannmg for
; : Future Fires
REE-]]IDI'ISI'_‘ Heculw_'ry Prnpnr:udn[-ﬁs.

POC: Dr. Brian J. Pierre 4



* Wildfire Electric Grid Security: M
- Planning / Monitoring




ELECTRIC GRID IGNITED WILDFIRES
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Suppression Cost eo | $968 | $333 | $1220 | $661 | $667 | $588 | $691 | $2703 | $1156
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Live Fuel Moisture Content Scale
[l 30-50% : Treat as dead fuel

50-80%: Yellowing / curing
80-100%: Green color pales
[ 100-200%: Mature foliage
[l +200%: Fresh foliage, growing

US Drought Monitor Scale
Abnormally Dry (DO)

Moderate Drought (D1)
[ severe Drought (D2)
B Extreme Drought (D3)
[l Exceptional Drought (D4)
= = 10k Acres



WILDFIRE RISK: NEW MEXICO

= Transmission Lines

Historic Fire Frequency 1990 - 2023
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GUSTS AND SUSTAINED WINDSPEED | NEW MEXICO 2023 DATA

Wind obviously has a major impact on wildfire risk, especially
spread rate, which can often lead to the largest wildfires
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Vegetation Classification for Fire Spread Modeling

Problem:
= Utilities require accurate up-to-date fire spread models to safely
and efficiently distribute mitigation resources.
= Accurate modeling of wildfire spread requires detailed and up-to-
date input data on the vegetation conditions such as amount of
biomass, vegetation cover type and flammability characteristics.

Approach:

» Leverage machine learning (ML) with frequent revisit multiband
satellite imagery to predict vegetation coverage for accurate up-
to-date fuel model generation.

= ML model down-selection and optimization.

= Run fire spread simulations against historic wildfires to validate
fuel model generation.

Impact: o _ _ Predicted Vegetation Coverage Pixel (inner circle) from
= |ncrease the accuracy and reliability of fire spread models with ML model trained on BLM labelled data. Quter circle is
On-the-fly fuel model generation from up-to-date satellite data. an RGB stacked 10m satellite image representing a

fraction of the model input.

POC: Dr. Michelle Bester, Tomas Moore 9



WILDFIRE MODELING

1. Data-driven Dynamic Wildfire Risk Maps

e Satellite imagery, dynamic accurate ML-derived vegetation
characterization, weather station data

Dynamic Wildfire Risk
e Wildfire spread modeling

2. Dynamic Monitoring for Grid Vulnerability to Fire

* Wildfire risk — electric grid impacts, possible cascading failure.

Raw Point Cloud

Canopy Height (m)

Field measurements
as ground truth

3. Optimized Vegetation and Resiliency Treatments to
data for Al training

Reduce Wildfire Threat
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POC: Dr. Michelle Bester, Dr. Jubair Yusuf, Dr. Lauren Wheeler 10



Future Burn Probability: Next Fire Season Impacts to Electric Grid

Problem:
= Utilities need to plan months in advance
= Fire weather and burn probability forecasts are often short term
(next 7-days), there is a need for mid-term (months ahead)
forecasts

Approach:

=  Use machine learning methodology with satellite imagery and
field data to predict vegetation growth 6 months ahead

= Downscale seasonal forecasts

=  Run WRF-SFIRE fire simulations with long-term weather forecast
data and forecasted vegetation data

= Ensemble runs and overlay with GIS data of electric grid assets

= Back-test on historic fire seasons

Impact:
= Forecasting wildfire risk for the upcoming fire season increasing Burn Probability: Mapped burn probability for the
preparation and enables fast response in the event of a wildfire United States mapped in 2022 by the USFS.

= Partnering with utilities, USFS, and companies to beta-test the
tool and align with utility operator needs

POC: Dr. Laura Wheeler, Dr. Michelle Bester 1



PUBLIC SAFETY POWER SHUTOFF (PSPS) OPTIMIZATION FOR
WILDFIRE RESILIENT GRID OPERATION

Investigating the best strategies for PSPS operations by combining optimization models and data-driven PSPS forecasts

Problem: It is challenging to achieve both safety from . @ s L) ———
wildfire and reduce the number of customers impacted by o= o CL .

PSPS. PSPS action may severely impact critical loads and Sl ®

leave the grid network vulnerable to additional contingencies o 3

in post-PSPS periods.

Text #OUT to 78766 to report
your power is out.

2 [ g 4o Nt st Bt o ot Map L. d 3 N &
Ap p ro a c h * Text #4ALERT to 78766 to get S X N
.

« Development of optimization models to minimize load- ...
shedding and impact on customers without compromising R

wildfire risk Q 1w

* Ensuring more critical loads getting served in PSPS events

* Leveraging the PSPS forecasts to complement the
optimization model and help utilities select the best PSPS
strategy.

Thank you KOB4

Maximizin
8 for reporting

Expected outcome and impact: e Load Delivery
» Assist utilities in identifying optimal deployment of PSPS, Minimizing
o I . . : Wildfire Risk
to minimize wildfire risk, maximizing service to customers

especially critical loads, and minimizing the impact to the

Quantification of

Combined Risks

M

bulk electric grid security (e.g. a "weakened” state possibly Targoerteed

leading to cascading outages). /?cpplrjosapcsh
or

POC: Dr. Jubair Yusuf 12



PyroKit: Wildfire Risk and Mitigation Planning Tool

Problem:

= Assessing current conditions and risk is
critical to avoid electric-equipment
started fires and to be prepared for
encroaching wildfire.

Approach:

= Leveraging previous R&D investments at
Sandia National Labs, we will use
machine learning algorithms trained on
satellite imagery and weather station
data to determine wildfire risk and
mitigation effectiveness.
= Data models include:
= Dynamic utility wildfire risk maps
= Burn Probability
»= Red Flag Warning
= Customizable Public Safety Power
Shutoff (PSPS) calculator
= Contingency Analysis
= Mitigation Scenarios / Solutions

Impact:

= Provide decision makers with an
interactive map which shows fire risk and
then allows the user to run mitigation
scenarios based on user input
management objectives.
POC: Phil Kay

¢

&

Mitigation Scenarios

i1 Number of Population
2 Number of Structures

¢ 3 Number of Vulnerable Communities
4 Wildfire Suppression Costs

i 5 Equipment Replacement Costs

: 6 Customer hours without power

Fillin the rank of importance in
Q sequential order (1-6) then click "Run
Mitigation Scenario”

» Run Mitigation Scenario

PYROKIT
ona TOrest @ @ i — m—
00 Split Screen Map Off et ti Treatment Objectives
—_— rea meDn nrormation X b
Treatment ID: 1
Post Treatment 0 Impact Fire Behavior K
Standard Y,
Treatment Area 137
Land Owner USFS Number of
Vulnerable Number of
S — Communities Structures
~ ysical an
AT Treatment Type s
s s rescribed Burn
Ll
7'. 309 Canopies of trees
Gila Wilderness . ) reduced by 50% Wildfire
‘ ? Suppression :zp:lsael:jon
".. ~ = Canopy base Costs ?
heightincreased
Physical lrr:g ner
Ald
Wi Removal of
ladder fuels Equipment T—
under trees Replacement Hours
Costs
Granny Mountai
Surface fuel —0— Data Driven
reduced from
high load to low
load B Impact of Data Driven Mitigation Plan A
Example: Very
FID: 132 high dry climate
Reading Mountain oo Treatment Area (Acres): 101 shrub density to 1. Structures Exposed 12,407
» Shape Area: 408052656 PrescribedBurn dry climate
7 shrub density 2. Population Exposed 7,699
g “‘ R L of high
@ \l i cmovaroniig 3. Disadvantaged Population Exposed 3,369
4" load of litter
3 4 '4
* Y \ Reduction of 4. Wildfire Suppression Costs $85,165,056
A * dense grass
biomass 5. Equipment Replacement Costs $6,496,352
E Treatment Commercial 6. Customer Hours Without Power 135
~ it History ~ Thinning 2019
Silver City |
@ Bayard
y | L]
(@/mapbox



Table 1| Wildfire model comparisons

Wildfire Developer Primary Key features Benefits Limitation Usedin PSRA
WILDFIRE TOOLS model application
FireSim Technosylva Deterministic Physics-based Quickly determines May not capture all Used by PG&D, SCE,
and probabilistic  wildfire models, fire path and impacts, complexities of fire San Diego Gas &
. . modelling, initial attack all-in-one platform: behaviour, not free Electric, Xcel Energy,
" Many tOOl.S to be aware Of to assistin real-time fire assessment, impact wildfire risk forecasting, foruse Bear Valley Electric
. . . - . . behaviour analysis, urban spread predictions, Service, Liberty for
Wll'dﬂ re mOdellngl Chara CterIZIng Wi l'dﬂ re prediction encroachment risk mitigation and fire wildfire mitigation plan
riSk Spread mOdel.ing forecasting algorithl_'ns, r;al—time behaviour analysis
! ! ! data calibration
Wi I'd fl re b e h avior ana lyS IS. IFTDSS US Forest Fuel treatment Web-based User-friendly interface, Requires detailed Using IFTDSS, they
Service planning and application, comprehensive US input data provided a wildfire
wildfire risk integrates multiple data, step-by-step characterization
™ Exa mp les of ot h er l_a b ri S k too I.S : assessment models (FlamMap, fuels treatment package enabling
. FARSITE, BehavePlus) testing, supports proactive decision-
L] RAD R— Fi re (PN N L) decision-making, free making for tfl:e wildfire
access, generates mitigation plan
= AHA (I N L) maps, graphs and
. . tables
= WildfireGPT (ANL)
. . Solid Fire NA 1D/2D flame Physics-based An easy-to-use tool Does not account The developed
= Wi ld fl re Too l Invento ry an d Model model for approach, detailed for evaluating wildfire for crown fires and resilience assessment
. deterministic/ fire behaviour risk, aiding fire spotting, represents quantifies how wildfire
Eva lu ation (E P R I ) probabilistic simulation, computes management decisions  the flame only as characteristics such
wildfire risk radiative heat flux and integrating into a radiant surface as ignition probability,
ELMFIRE Chris Real-time Physics-based model  Real-time forec modelling, fire transfer power system risk (solid-flame intensity, spread

Lautenberger and historical that considers fuel, quantifies fire ri management, assessments assumption)and may  rate, temperature
fire spread topography, weather  exposure firefighting lack accuracy and sgverit?r aﬁed
forecasting and fire suppression; the failure likelihood

Monte Carlo analysis of power system
components
FlamMap US Forest Deterministic Physics-based Detailed fire be - - -

B B (b b model, produces maps, comprek MTT US Forest Underlying Physics-based Approximates complex  Not designed to A study evaluated
prediction and raster maps, analysis Service model for prediction for fire fire behaviour models predict final fire wildfire risk-mitigation
landscape integrates multiple FlamMap and perimeter expansion, at low computational extent — final measures by PG&D,
analysis under fire models, provides FSim calculates MTT cost (makes it well perimeters depend on  using MTT for
s | acrossa 2D network  suited for running many  simulation duration, detailed ignition risk
conditions. condition data of landscape nodes wildfire simulations), requires detailed predictions based on

predicts fire behaviour  input data data from over 25,000
FARSITE US Forest 2D deterministic  Huygens, combines Combines mult and perimeter miles of high-risk
Service fire growth madels for surface, fire models, gel expansion effectively lines™
simulation spot, crown fires, fire propagatior
wave dissemination  maps, essential Burn-P3 Natural Landscape-scale Physics-based model Detailed predictions, Extensiveinputdata,  No
models Groee e e Resources wildfire that uses Prometheus supports planning, computationally
fETE T Canada simulation model, evaluates OpEen source intensive
(NRCan) fire characteristics

S. Vahedi, J. Zhao, B. Pierre, et. al., “Wildfire and power grid nexus in a
changing climate,” Nature Reviews Electrical Engineering, March 2025.

and produces burn
probability maps
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LIGHTNING MODELING

1. First principles of wildfire ignition by lightning
e Better understand probability of lightning ignition given different
situations to inform wildfire response.
e Create an experimentally-driven computational model to understand

the predictability of lightning-ignited fire using Sandia’s lightning
strike lab capabilities for testing.

— 1850,

— 1500.

Temp

1000.

5000 2, Novel lightning monitoring of critical assets for wildfire
00 risk assessment

* Develop a novel lightning monitoring system that provides
total lightning current (and energy), to predict ignition by

lightning.

16

POC: Dr. Julia Tilles



ARC MODELING

« Testing arc probabilities

« Testing arc ignition
probabilities

Nuclear Energy

“There was a failure of the main contacts of a 25 year
old 4.16 kV breaker to close fully, causing a HEAF
event... the fire persisted for three hours until water
was applied.” ~San Onofre Nuclear Generating Station

3 - i
ul‘sulator Flashover from Wildfire Cntaminants
* High voltage breakdown testing of clean vs. contaminated/aged insulators
» Define risk metrics for contamination and aging at which point risk of failure / faults increase
2 ; * Develop failure thresholds and tracking criteria (working with wildfire propagation projects at
'..o' Sandia) that can be used for grid health predictions in response to wildfires.

POC: Dr. Julia Tilles, Dr. Kenneth Armijo, Dr. Alex Brown 17



LEVERAGE IGNITION MODELING FROM OTHER SOURCES

Existing Models: Potential New Phenomenology:

Flux

Wind

5-year testing campaign, conducted high-
flux exposures at Sandia National Thermal

Fluence Pyrolysis Initiation Geometry Test Faci|ity,

Fuel (thick/thin/type) Scale Leveraging ignition models from other

sources.

Moisture , - Blast/Fire Interaction
Sustained Ignition

Model uncertainties for a
probabilistic prediction instead State of un-ignited fuels
of a deterministic result (for spread)

 ldentified missing physics in most existing
models:
« Wind effects on ignition
« Geometry effects on ignition
« Effect of scale on ignition

HIGH-SPEED IMAGING 600 FPS 8.863 sec

POC: Dr. Kenneth Armijo, Dr. Alex Brown



Protective Relaying To Reduce Wildfire Risks and Possibly
Reduce Public Safety Power Shutoff (PSPS) Events

- New power system protection methods and
new technologies can reduce wildfire grid
ignitions significantly.

- Sandia protective relaying R&D efforts to
significantly reduce future wildfire risks

IEEE Power & Energy Society TECHNICAL REPORT

Protection Planning for Faults e e

1. Rapid Earth Current Fire Limiter (RECFL)

m(":s~w <IEEE

Preemptive Protection Response

Protection Methods Used
2. Adaptive Settings - Fast Sensitive Trip, No Reclose s 1s Toseilecken anf

. . . . Distribution Lines
3. Incipient Failure Detection

Fast Fault Clearing

4, Al-Based Traveling Wave Relay
5. Communication-Assisted Fast Protection

POC: Dr. Matthew Reno 19



Al-BASED TRAVELING WAVE PROTECTION SCHEME FOR
DISTRIBUTION SYSTEMS

Use fast fault location to quickly detect and isolate an incident before it leads to a wildfire

Problem: The potential for fire ignition is proportional to the duration of the arc, and current protection
schemes generally take around 100 milliseconds to a second to operate

Solution:

« Develop fast, local, bi-directional, data-driven fault detection and location schemes for distribution
systems, including DER high-penetrations, that operate in less than 2 milliseconds

« Use high-frequency (1 MHz) traveling wave methods combined with physics-informed Artificial
Intelligence can learn correlations to determine the fault location - Ability to detect fault location in the
distribution system within 100 meters

Conventional protection

<15.36 kHz Measurements’ processing and >16.66 ms operation time

. . S, , Trip logic
sampling rate protection functions’ calculation Often much greater (100ms+)

Fast, Al data-driven protection ﬁ Wildfire ignition
risk decrease!

> 400 kHz Advanced signal-processing Machine- . .
: . : 1.4 ms operation time
sampling rate and feature creation Learning model

?

Trained on past faults
and simulated faults 20

POC: Miguel Jimenez Aparicio and Dr. Matthew Reno



Al-BASED PROTECTION - TECHNOLOGY VALIDATION EFFORTS
AND DEMONSTRATIONS

Kirtland Air Force Base, Albuquerque, NM (2023) Portales, NM (2024-2025)

New Mexico

JNuGrid

Link to YouTube
demonstration ‘

video E

Roosevelt County
Electric Cooperative

Risks/challenges to investigate:
« Integration with MV commercial sensors
« Impacts of system model accuracy

oft

POC: Miguel Jimenez Aparicio 21


https://www.youtube.com/watch?v=pLtGcPc5hyo

Energy Production Ratio - Difference (Annual - Predicted)
Camp Fire: 11-14-2018

SMOKE MODELING

Custom WRF-Fire code and LANDIS-II
wioss  FUNNiNg on Sandia HPC environments

6

., Smoke plumes from many major fires
» Simulated

« Developed a coupled landscape, .
weather, wildfire, smoke ’
modeling platform. .

« Wide-scale future smoke impact
across the U.S. (plum modeling).

« Help forecast future smoke
impact to energy systems,
primarily solar power.

« Smoke impact to military
installation mission assurance.

November 14, 2018
_# v Source: NASA Earth
Project SMOKEWISE : Observatory

POC: Dr. Dan Krofcheck and Dr. Joe Crockett e 22




VISUALIZING UNCERTAINTY: PSPS AND EVACUATION

Decision making for Public Safety Power Shutoffs and Evacuations.

Design choices, visualizations, impact decision making. How should data be presented to a grid operator to make
the optimal decisions.

Wildfire evacuation decision dependent on how the

information is presented
State uncertainty is uncertainty about the current or

future state of some phenomenon 0.3
* Very common in weather forecasts, hazard maps, Al/ML 0.8
outputs 0.7

0.6

HUGE differences in
evacuation rates when

0.5

Humans are notoriously bad at understanding state

0.4

uncertainty and probability 03 th‘jvzasr;fe:g:tr;‘jait;°"
* Prior research suggests that different representations of 0.2 different ways!
uncertainty can lead to different patterns of decisions, 0.1
but we don’t yet know when and why this happens. 0

10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%
Probability of the House Being in the Burn Zone

Grid operations (and modeling) involve complex, —Hue —Hue Uncert Palette —Isarithmic —Transparency —Nat Freq
heterogeneous, uncertain information

* How should that data be presented to support optimal
decision making?

. Your house is located in the
40 to 50%
burn likelihood zone.

POC: Dr. Laura Matzen 23




THESE CHOICES MATTER

CentrallMoreno Valley,

Miami Lane

BlackiLake

Taos Canyon Black Lake Resorts

Sierra Bonita

- - . .
‘?dﬂo. PlacitajRio Pueblo Los Hueros, Llos Lefebres. Ocate’Naranjos
'enasco )

R%ck Wall, 'asMochas, Sipapu
El'Valle, Las Trampas,%Valle}:ito

i
Lower Iéé\i_'osada

Pecos Southeast

Camino Rincon, RiveralRidge ? b Y + q ! ! ) awsing
Pecos PhdinINa i snaiment " R ’I‘ * ‘ X'
Historical'P K R s :' ,H > e
Romeroville East ( : = >

North San Ysidro SheridaniSouth

Tecolote South:harles R
LalLiendre

\ 4 2 »‘V

SaniJ North
(e Martinezville /

: Dr. Laura Matzen
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ACCELERATED GRID RECOVERY POST WILDFIRE

Problem: Electrical outage time due to wildfires needs to be

minimized. Load Restoration System Recovery
Approach: Today, linemen are frequently stationed in areas Re5|dent|§I Tr.ans.mls.smn
affected by wildfires. They await safety approval to access Commercial Distribution
damaged areas and then they proceed to assess and repair the Industrial Adequacy/Reliability

affect grid infrastructure.
Electric Dispatch &

Expected outcome and impact: In partnership with PNM/SCE, Topology Multi-Period Safety and
this approach will manage key information that can accelerate grid Configuration Mixed Integer Repair Crews
recovery

Optimization
» Document existing capabilities

« Created an optimization method enabling an accelerated
recovery decision process

Fire Emergency
FlamMap fire o Crews Services
progression coupled S
with grid and . .
transportation Figure: Optimal Recovery of
infrastructure Wildfires for Electric Utilities

-~ El

POC: Ross Guttromson and Dr. Brent Austgen EDISON 26
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