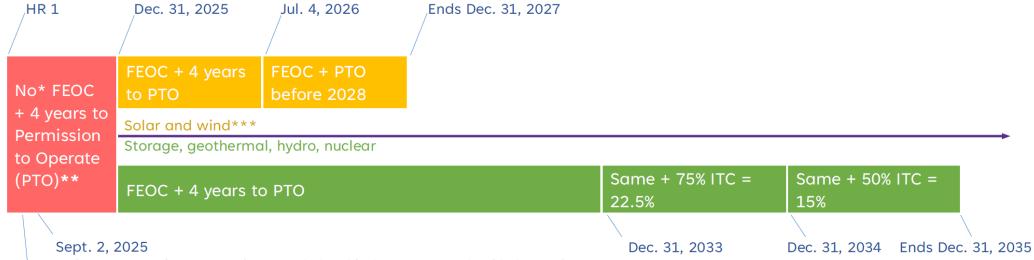
HR1 Impacts & Strategies to Lower Energy Costs in New Mexico

Rebecca Stair
Director
Energy Conservation and Management Division

Table of Contents

- 1. HR1: What's changing and why it matters
- 2. What is driving electricity costs in New Mexico
- 3. State strategies to lower energy costs
- 4. Legislative and regulatory opportunities

1. HR1: What's changing and why it matters


What We Had Before HR1

Incentive Type	Federal tax credit amount
Solar & Wind (utility-scale)	Varying amounts
EVs	Up to \$7,500
Home Efficiency	Up to \$3,200 for heat pumps, insulation, water heaters, etc
Residential Clean Energy	Up to 30% for solar, batteries, heat pumps

What We Are Losing

HR 1 48E investment tax credit (ITC) and 45Y production tax credit (PTC) phase-out

Projects commencing construction on and after this date must comply with the requirements of the new IRS notice. 5% safe harbor only available for small solar (<1.5MW_{AC})

Aug. 15, 2025 IRS Notice 2025-42 changed commence construction rules

- IRS Notice 2025-42 changes "commence construction" rules
- Projects starting after Sept 2, 2025 must meet new FEOC compliance
- Safe harbor (4 years to PTO) applies only to small solar (<1.5MW_AC)
- ITC phases down:
 - 75% credit by 2033 \rightarrow 22.5%
 - 50% credit by $2034 \rightarrow 15\%$
 - Ends Dec 31, 2035
- Offshore wind follows separate rules

What We Are Losing In addition to 48E ITC and 45Y PTC

- EV tax credit expired Sept 30, 2025
- Home efficiency and residential clean energy credits expire Dec 31, 2025
- Loss of federal grants (e.g., \$35M VPP grant to PNM, SFA)
- Treasury rules still pending
- Industry confusion = investment paralysis

Silver Linings

- Still available:
 - Utility-scale battery credits
 - Ground-coupled heat pumps that are third-party owned
 - Elective pay (tax credit for entities that don't pay taxes)

Compounding the losses of HR1, electricity prices are rising

On November 11, 2025, DNV* released a report predicting that "average household energy costs in North America will rise 22% after adjusting for inflation between now and 2035."

> *DNV is a global assurance and risk management firm headquartered in Norway. It specializes in energy systems forecasting, sustainability consulting, and infrastructure certification. DNV's Energy Transition Outlook

2. What is driving electricity costs in New Mexico

What's currently driving electricity costs in New Mexico?

- Not large loads like data centers or crypto mining. Correlation is not causation. These are often scapegoated, but aren't common in NM (yet). And we have lots of electrons.
- Not transmission. New transmission lines often unlock access to cheaper electrons, which offsets their own costs.
- It's distribution. The local poles, wires, and transformers in your neighborhood are aging, stressed, and increasingly expensive to maintain and upgrade.
- Also, fluctuating natural gas costs are passed directly along to ratepayers. This volatility makes electricity bills even more unpredictable.
- Why it matters: Distribution and fuel costs are embedded in every ratepayer's bill.

Why Distribution Costs Are Rising

Distribution is no longer "business as usual"—it's a climate resilience challenge.

- **Deferred maintenance:** Because they are not allowed to ratebase operations costs, utilities may have postponed maintenance for years. Now the bill is coming due.
- Climate adaptation: Hotter temperatures reduce wire capacity. Hotter temperatures need thicker wires, more circuits, and smarter controls.
- **Extreme weather:** High winds, wildfires, hail, and ice storms demand stronger poles, buried lines, and hardened substations.
- **Disaster recovery:** Rebuilding damaged infrastructure is costly and recurring.
- **Supply chain constraints:** COVID-era shortages persist—especially for transformers, which are custom-built and backlogged.
- Tariffs, high interest and inflation: Steel, copper, and grid components are now more expensive due to global trade dynamics.

Why Distribution (& Transmission) Investment Matters

Strategic investment in transmission and distribution can unlock savings.

- Pattern Energy's wind is curtailed. Transmission congestion prevents cheap electrons from reaching customers.
- **Investing in distribution and transmission =** unlocking cheaper electrons to flow from where they're generated to where they're needed.
- **Distribution bottlenecks limit grid flexibility.** We average only ~50% grid utilization. Let's fully use the grid we already built and paid for.

Policy takeaway: Modernizing transmission and distribution is one of the most costeffective ways to lower rates and improve reliability.

3. State strategies to lower energy costs

State strategies to lower energy costs

- 1) Cost control reduce unnecessary costs
- 2) Cost distribution distribute costs fairly across the correct (and large) group
- 3) Increase customer agency and choice
- 4) Align electric utility incentives

1) Cost Control

Avoiding Unnecessary Costs

- The cheapest electron is the one we don't use. Support energy efficiency measures such as CEED, community solar, grid modernization
- Consider creating an independent third party to manage our energy efficiency programs, especially for commercial or industrial (like CA and VT)
- .. and since energy efficiency can also lower peak demand and thus avoid building more peaker plants and infrastructure, also support demand response, flexible interconnection, time-varying rates
- Deploy batteries: increase grid utilization, avoid peaker plant emissions, and enable consumer energy arbitrage
- Mitigate fluctuating natural gas prices, ask the PRC to investigate fuel cost sharing
- Streamline permitting (consider Massachusetts)
- Wildfire cost reduction: see SM2 report

1) Cost Control

Case Study: Massachusetts' 2024 Climate Act

Centralized Oversight

Executive Office of Energy and Environmental Affairs (EEA) coordinates permitting across agencies and provides standardized guidance.

Streamlined Permitting

Applies to both small-scale and utility-scale solar projects, reducing duplicative reviews and accelerating approvals.

Enforceable Timelines

Local jurisdictions must act within defined timeframes; state agencies can intervene when delays occur.

Why It Matters for New Mexico

- Permitting delays can slow the addition of more electrons to the grid
- Local jurisdictions may need state support in evaluating new technologies such as batteries.
- A state-level backstop modeled on Massachusetts would:
 - Ensure timely approvals while honoring local control
 - Reduce red tape
 - Unlock stalled projects

2) Cost Distribution

Who pays? Distribute costs fairly across the correct (large) group

- Support regulatory innovation to accompany ongoing utility innovation and system transformation (new tech suggests we consider new regulations)
- Support grid planning from the state's perspective too (NMRETA transmission study)
- Embrace distributed generation and storage for resilience, affordability
- Consider unique rates and/or tariffs for the new unique large loads (data centers, crypto)
- Support public dollars joining private dollars for grid modernization (California: transmission public-private partnership revolving loan or Alabama pre-purchasing transformers in bulk)

2) Cost Distribution

Case Study: Australia's 2026 Solar Sharer Plan

Daytime Rate Reform: Federal policy mandates energy retailers to offer free electricity during midday hours to households, using surplus rooftop solar.

<u>Universal Access:</u> Applies to all customers, including renters and apartment dwellers extending solar benefits beyond rooftop ownership.

Grid Optimization: Shifts demand to solar-rich hours, reduces curtailment, and displaces coal and gas generation with clean daytime supply.

Why It Matters for New Mexico

- NM has abundant solar but limited midday demand.
- Rooftop solar benefits are unevenly distributed across income and housing types.
- A Solar Sharer-style policy could:
 - Expand access to clean energy without requiring rooftop panels
 - o Reduce curtailment and improve grid utilization, eg "soak up" midday sun
 - Lower peak-hour costs and emissions
 - Support renters and low-income households with zero-cost midday power

3) Increase Customer Agency & Choice

Open, fair markets for distributed assets

- Enable third-party participation in distributed energy markets (solar, storage, demand response)
- Reduce barriers to interconnection, compensation, and aggregation
- Promote competition and innovation while maintaining grid reliability
- Example: Community solar and VPPs that allow non-utility ownership and operation

Ratepayer autonomy: third-party access & choice

- Allow customers to choose among service models and energy offerings, even within regulated markets
- Expand access to time-varying rates, green power options, and bundled DER services
- Policy levers: SBTC reform, tariff redesign, and pilot programs to test flexible customer offerings

Virtual Power Plants (VPPs)

- Aggregate distributed resources (solar, batteries, EVs, smart thermostats) into grid-responsive fleets
- Provide grid services like peak shaving, frequency regulation, and emergency backup
- Empower customers to participate in wholesale markets or utility programs
- VPPs reduce system costs and improve resilience without new generation or wires

4) Align IOU Incentives

So that the more ratepayers save money/electrons, the more utilities earn.

- Replace capex ROI with totex (Total Expenditure) or cost-of-service
- Decouple revenue from electricity sales
- Consider multiyear rate plans or multiyear performance framework
 - For investor-owned utilities (IOUs), by the Public Regulation Commission (PRC)
- Performance-Based Regulations (PBR) (e.g., Hawaii's MWh savings bonus)

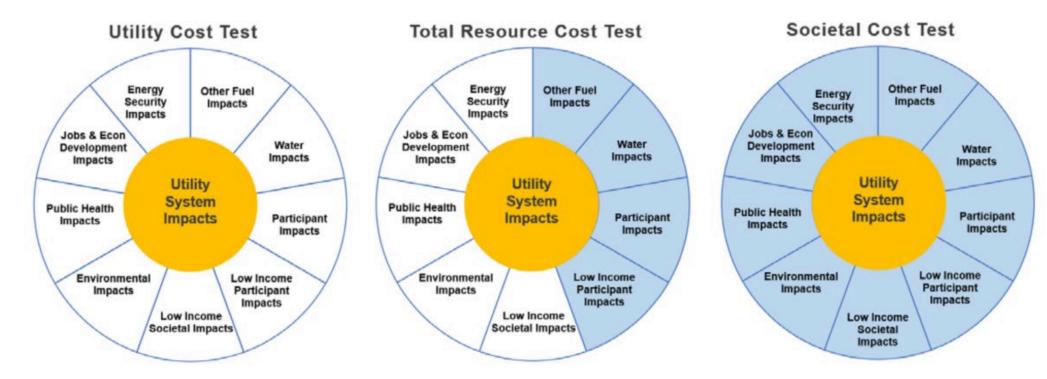
4) Align IOU Incentives

Case Study: Hawaii's MWh Savings Bonus

Performance-Based Incentive Utilities earn bonuses for verified reductions in electricity use, measured in actual MWh saved through efficiency, demand response, and distributed energy.

Outcome-Driven Regulation Rewards customer savings and grid optimization instead of capital spending.

Why It Matters for New Mexico


- Aligns utility profits with public benefit
- Encourages non-wires alternatives
- Supports CEED, VPPs, and battery deployment

4) Align IOU Incentives: Expand Utility Cost Test

Include non-monetary benefits in Efficient Use of Energy Act such as:

- Avoided greenhouse gas emissions
- 2. Public health improvements

4. Legislative and regulatory opportunities

Support PRC Action

The PRC already has tools to lower costs and improve equity. Legislative support can unlock their full potential.

- **Low-Income Rates:** Statutory authority exists to create targeted rate structures for vulnerable households.
- **Performance-Based Regulation (PBR):** Enables outcome-driven oversight—rewarding reliability, affordability, and emissions reductions.
- Percentage-of-Income Payment Plans (PIPP): Aligns energy bills with household income, reducing arrears and disconnections.
- **Totex Accounting:** Allows utilities to earn returns on both capital and operating expenditures, encouraging non-wires alternatives.
- Why It Matters: These tools shift utility incentives, protect ratepayers, and modernize regulation without new legislation.

Support Statewide Planning

New Mexico needs a coordinated roadmap to guide transmission and electrification investments.

- **Transmission Strategy:** Identify regions desiring economic growth, interconnection bottlenecks, and regional coordination opportunities (support RETA's transmission plan).
- Beneficial Electrification Roadmap: Align building decarbonization, EV deployment, and grid readiness with affordability goals, while avoiding a utility death spiral.
- Cross-Agency Coordination: Support EMNRD, PRC, and DOT efforts to align on infrastructure, permitting, and funding.
- Why It Matters: Without a plan, we risk stranded assets, over- or under-building, missed federal funding, inefficient grid buildout, and missed economic development.

Support ORA

EMNRD's Office of Regulatory Affairs (ORA) is essential for ratepayer representation in complex utility proceedings.

- Quasi-Public Advocate: ORA provides technical expertise and legal representation on behalf of residential customers.
- **Balances Utility Influence:** Ensures rate cases, IRPs, and rulemakings reflect the holistic public interest—not just utility priorities, and not just cost (DOJ's role).
- **Deep Dive:** Nuanced analysis of utility economics and long-term best interest of the state as a whole

Why It Matters: A well-resourced ORA helps enact state policy and protects ratepayers from unjustified costs.

Conclusion

New Mexico can lead on affordability, resilience, and clean energy, if we act strategically.

- HR1 creates uncertainty, but NM can lead with clarity and coordination
- Distribution is the cost frontier. Modernizing it lowers bills and improves reliability and resilience.
- Smart policy = aligned incentives, empowered customers, and durable regulation.

Let's build a grid that works for everyone

Puck Stair

Director

Energy Conservation and Management Division

Rebecca.Stair@emnrd.nm.gov