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Students at the elementary and middle school levels are not performing well in mathematics, and 

their overall performance does not improve over time (NCES, 2013, 2015). Based on recent 

reports, these students are not considered mathematically literate or proficient when compared with 

national standards (Lemke et al., 2004; Mullis, Martin, Gonzalez, & Chrostowski, 2004; NMAP, 

2008; NRC, 2001). Several researchers have demonstrated that students who complete kindergarten 

with inadequate knowledge of basic mathematical concepts and skills continue to experience 

difficulties with mathematics throughout their elementary and secondary years (Duncan et al., 2007; 

Jordan, Kaplan, Ramineni, & Locuniak, 2009; Morgan, Farkas, & Qiong, 2009). By fourth grade, 

student performance is deemed poor based on various measures of mathematics (Clements, 

Xiufeng, & Sarama, 2008; D. Clements & Sarama, 2007; Dossey, 1992; Gersten et al., 2009; NRC, 

2009; Reese, Miller, Mazzeo, & Dossey, 1997). For instance, Mitchell and colleagues describe 

students at the fourth-grade level as consistently performing poorly on assessment items, even items 

of low complexity, showing no improvement by the eighth and twelfth grades (Dossey, 1992; 

Mitchell, Hawkins, Stancavage, & Dossey, 2000). These studies point to the change needed in how 

students, particularly those at the elementary level, are taught (Chernoff, Flanagan, McPhee, & Park, 

2007; Ginsburg, Lee, & Boyd, 2008). 

There are interrelated mechanisms for improving student achievement: professional development, 

instruction, and curricular materials (Desimone, 2009; Desimone, Porter, Garet, Yoon, & Birman, 

2002). Over the past three decades, much work has been pushing instruction and materials to be 

more in line with a socio-constructivist approach to teaching and learning (NCTM, 1989, 1991). 

This teaching approach is often referred to as an inquiry approach in the literature, while curricular 

materials are referred to as standards-based or reformed mathematics. Through the 1990s, the 

National Science Foundation (NSF) funded the development of numerous K-12 programs (Senk & 

Thompson, 2003). These curricular materials (e.g., textbooks) focus on building conceptual 

knowledge through rich contexts (Trafton, Reys, & Wasman, 2001). In addition, much of the 

research has supported a culturally based education (CBE) approach for Native American students 

(Demmert & Towner, 2003; Lipka & Adams, 2004). 

There is evidence that teaching through a socio-constructivist approach positively affects teachers and 

students. Cognitively Guided Instruction (CGI) is one approach that has demonstrated changes in 

teachers’ beliefs and knowledge on how mathematics should be taught, as well as in improved 

student learning (Carpenter, Fennema, Peterson, Chiange, & Loef, 1989; Carpenter, Franke, Jacobs, 

& Fennema, 1998; Fennema et al., 1996; Hiebert et al., 1996). This type of teaching also develops 

positive attitudes and beliefs in students (Wood & Sellers, 1997), increases students’ participation in 

problem-solving (Weber, Radu, Mueller, Powell, & Maher, 2010), and enhances the involvement of 

all kinds of students (Sullivan, Mousley, & Zevenberger, 2006). 



DMT Framework and Classroom Structure (2021) | Page 18 
 

The following section describes the theoretical foundation for Developing Mathematical Thinking’s 

(DMT) pedagogical framework. The DMT’s framework draws much from the socio-constructivist 

perspective; nevertheless, it is unique as a pedagogical framework. It has additional components 

drawn from other views of learning that help enhance the basic tenets of socio-constructivism. We 

have also described a framework for how curricular modules that address each dimension should be 

built. Finally, we have added a pilot study that evaluated the effectiveness of a sample module. 

THEORETICAL FRAMEWORK FOR INSTRUCTION – 
DEVELOPING MATHEMATICAL THINKING 

One critical role of a teacher is to create equitable learning conditions that foster understanding so 

students can become better problem-solvers in and outside of school (Hiebert et al., 1996; 

Newmann & Associates, 1996). To do this, we propose to examine an instructional framework, 

Developing Mathematical Thinking—DMT (Brendefur, Thiede, Strother, Bunning, & Peck, 2013; 

Brendefur, Thiede, Strother, Jesse, & Sutton, 2016), which focuses on five critical dimensions: (a) 

taking students’ ideas seriously, (b) pressing students conceptually, (c) encouraging multiple 

strategies and models, (d) addressing misconceptions, and (e) focusing on the structure of 

mathematics. These five dimensions frame an approach to teaching mathematics for a better 

understanding (Carpenter & Lehrer, 1999), in addition to incorporating notions of “progressive 

formalization” and “mathematizing” (Freudenthal, 1973, 1991; Treffers, 1987).  

As Gravemeijer and van Galen 

(2003) describe, progressive 

formalization is a process of first 

allowing students to develop 

informal strategies for solving 

contextual problems and ways to 

model these approaches, and then, 

by critically examining both these 

strategies and models, teachers 

press students to develop more 

sophisticated, formal, 

conventional, and abstract 

strategies and algorithms. By 

comparing solution strategies and 

examining the relationship among 

enactive, iconic, and symbolic 

models (Bruner, 1964, 1996), students learn which manipulations make sense for given contexts and 

are encouraged to develop more generalizable procedures. Although rarely would you observe any 

of these dimensions or instructional practices exclusively, we examined each dimension individually 

for theoretical constructs and situations of practice – both instructional and for the curriculum.  

TAKING STUDENTS’ IDEAS SERIOUSLY (TSIS) 
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Ideas are taken seriously when students are challenged to solve a novel but meaningful mathematics 

task, allowed to share their initial ideas, and encouraged to connect what they already know to other 

related mathematical concepts (Hiebert et al., 1996; Romberg & Kaput, 1999). There are several 

advantages to placing students in such situations wherein their intuitive understanding is addressed 

and, in some instances, confronted by the teacher. Students are placed – typically briefly – in a state 

of cognitive dissonance, which enables them to begin the process of perseverance and schema 

development (Driscoll, 2004). Tapping into prior knowledge is critical to engaging students in 

mathematics (Carpenter & Lehrer, 1999). 

Two overarching structures frame teaching for a richer-deeper understanding and ensure continuous 

growth in student understanding: progressive formalization and mathematizing. TSIS is the starting 

point for the developing notions of horizontal and vertical mathematization (Treffers, 1987). 

Horizontal mathematization pertains to students’ representing a contextualized problem 

mathematically to find a solution strategy. Vertical mathematization involves taking mathematics to a 

higher level as students make their representations (the second dimension) and strategies objects of 

mathematical examination (the third dimension). Mathematizing covers activities such as 

generalizing, justifying, formalizing, and curtailing – including, but not limited to, developing an 

abstract algorithm (Gravemeijer & van Galen, 2003). By emphasizing both types of mathematizing in 

classrooms, teachers must focus on the inherent structure (the fourth dimension) of the emerging 

mathematical ideas. In addition, teachers must address students’ misconceptions (the fifth 

dimension) as they arise so that they do not hinder the progression of mathematizing. One outcome 

of mathematizing is that teachers connect students’ informal ideas, many of which may be developed 

outside of school, with more formal mathematical ideas. An assumption made as part of the DMT 

process is that students’ informal ideas, conceptions, and strategies anticipate learning more formal 

mathematics later in their classroom experience. 

According to Hiebert and Carpenter, “one would predict that if children possessed internal 

networks constructed both in and out of school, and if they recognized the connections between 

them, their understanding and performance in both settings would improve” (Hiebert & Carpenter, 

1992, p. 72). Such a process starts with carefully chosen tasks – typically contextualized (Doerr, 

2006; Larsen &   Bartlo, 2009; M. Simon & Tzur, 2004). To solve these tasks, students must model 

the situation to some degree. Rather than beginning with standard algorithms and attempting to 

concretize them, teaching starts with students’ common-sense solutions to contextual problems that 

are seemingly real. By reflecting on their procedures for solving, students develop and are 

introduced to more sophisticated models (2nd dimension) and procedures that can also be used in 

other situations (Gravemeijer & van Galen, 2003, p. 114). 

Teachers should initially take students' ideas seriously by placing them in situations to activate their 

prior knowledge and extend their ideas. This is the beginning to develop mathematical 

understanding where teachers must attend to the process of progressive formalization and 

mathematizing. As Carpenter and Lehrer (1999) argue, “For learning with understanding to occur, 

instruction needs to provide students the opportunity to develop productive relationships, extend 

and apply their knowledge, reflect about their experiences, articulate what they know, and make 

knowledge their own” (p. 32). 

Once students are placed in such a problem-solving situation with no initial guidance from the 

teacher, they share their ideas with the teacher, other students, or the entire class to expand their 

mathematical thinking. For too many elementary teachers, these student solution strategies and 

notations may seem inefficient or informal, but by eliciting and valuing students’ initial solution 

strategies, teachers can connect students’ thinking to more efficient and abstract methods 
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(Freudenthal, 1973, 1991; Gravemeijer & van Galen, 2003; Treffers, 1987). Unfortunately, many 

elementary teachers do not have the pedagogical or mathematical knowledge to equitably challenge 

all students (Ball, Hill, & Bass, 2005; Hill, Sleep, Lewis, & Ball, 2007) and create a reflective and 

instructional discourse (Brendefur & Frykholm, 2000). Therefore, curricular resources are needed to 

provide teachers with access to possible ways to differentially build on groups of students’ informal 

and formal knowledge. This process is described in the section on the module framework. 

ENCOURAGING MULTIPLE STRATEGIES AND MODELS 
(EMSM) 

After students have had time for problem-solving and sharing their intuitive approaches, the next 

dimension is to encourage multiple strategies and models. Students must first be placed in situations 

that enable them to examine their approach to problem-solving and compare it with other 

approaches; second, they must be given opportunities to model the problem differently (Romberg & 

Kaput, 1999). 

Modeling is a critical component in developing mathematical thinking. Knowledge originates from 

students’ attempts to model contextual situations. The initial models eventually become the basis for 

solving related problems and a means of support for more formal mathematical reasoning 

(Gravemeijer & van Galen, 2003). As Cobb (2000) describes, this use of modeling “…implies a shift 

in classroom mathematical practices such that ways of symbolizing developed to initially express 

informal mathematical activity take on a life of their own and are used subsequently to support more 

formal mathematical activity in a range of situations” (p. 319). In this way, modeling is a fundamental 

process in learning mathematics. However, this view of models and modeling contrasts with the 

current instructional practices in mathematics in which models are used to “concretize expert 

knowledge” (Gravemeijer & van Galen, 2003, p. 118), such as when students are taught to model 

the traditional regrouping algorithm for subtraction with base-10 blocks. Likewise, contextual 

problems are traditionally presented only after students have mastered standard algorithmic ways of 

solving problems. 

Progressive formalization is taking students’ ways of modeling through enactive, iconic, and symbolic 

representations (Bruner, 1964) to become more formalized without making giant leaps. This 

process is addressed through both horizontal and vertical mathematizing. The focus is on students’ 

ways of using models rather than on teacher-dictated ways. By enacting aspects of “progressive 

formalization” and “mathematizing,” teachers develop a classroom practice based on the tenets of 

teaching for understanding. 

Thus, this second dimension involves developing students’ understanding of various models and 

approaches to solving problems (Dolk & Fosnot, 2006; NCTM, 2000; Romberg & Kaput, 1999). 

When students generate, evaluate, and utilize different mathematical strategies and models, they 

recognize the many ways to solve problems and represent solutions (Bruner, 1964). Various 

strategies and models highlight other aspects of mathematics, and by examining the same situation 

through different lenses, students’ overall understanding of the topic deepens. 

In the past, most reform or standards-based curricula have required students to solve a problem in 

two ways. However, students tend to represent the problem in two ways that are not distinct from 

each other and therefore do not address progressive formalization. In contrast, our module 

framework provides teachers with tasks that allow students to use, discuss, and practice with more 
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informal and formal enactive, iconic, and symbolic models. Contexts are also carefully chosen to 

enable more logical connections between students’ initial and informal models and the more 

mathematically valuable models. For example, if the area model is a desired iconic model, students 

would be given contextualized problems involving the covering of flat space, e.g., tiles on a floor or a 

map with gridlines used to find distances and areas of geographical regions (Leinwand & Ginsburg, 

2007; Watanabe, 2015). 

PRESSING STUDENTS CONCEPTUALLY (PSC) 

The third dimension shifts instructional practices beyond merely procedural understanding to 

pressing students to conceptualize mathematics. Here, the focus is on building connections among 

mathematical strategies and models to progressively formalize students’ ideas and methods for 

solving problems (Carpenter & Lehrer, 1999; NRC, 2001; Siegler & Alabali, 2004). For example, 

once students have had the chance to work on their solution methods, teachers must urge them to 

connect and compare methods, generalize new situations, and relate to formal mathematical terms 

and conventions. Through this process of connection and generalization, students’ informal 

methods become more formal and efficient (Carpenter & Lehrer, 1999; Gravemeijer & van Galen, 

2003). 

Adopting a cognitive perspective on understanding, teachers aim to create classroom experiences 

that encourage students to incorporate and organize new information into a well-connected network 

of foundational mathematical ideas. For example, when initially studying multiplication, students 

show a better understanding of when they can connect the operation to their previous (or 

concurrently) developed understandings of addition, patterning, and area. 

From a social perspective, teachers should assign tasks and activities that place students in situations 

where they reflect on how they solve problems and articulate relationships among different strategies 

or concepts. Students demonstrate this type of understanding when, for example, explaining their 

problem-solving methods and analyzing those of others. By asking students to generate and compare 

an iconic model to a symbolic model, they have the chance to understand the critical elements of 

mathematics. Here, to build a conceptual understanding, students are pressed to make connections 

between existing knowledge (informal ideas) and new knowledge (more formal mathematical ideas) 

(Hiebert & Carpenter, 1992). By critically examining their own and others’ strategies and models, 

students build an understanding which exemplifies the importance of social interactions in 

classrooms. Hiebert and Carpenter (1992) state the following: 

By thinking and talking about similarities and differences between arithmetic procedures, students 

can construct relationships. The instructional goal is not necessarily to inform one procedure by the 

other but rather to help students build a coherent mental network in which all pieces are joined to 

others with multiple links (Hiebert & Carpenter, 1992, p. 68). 

This discourse around mathematical ideas supports all students, including struggling learners 

(Brendefur & Frykholm, 2000; Moschkovich, 1999, 2012). Through the interlinked processes of 

modeling situations mathematically and analyzing and comparing different methods, teachers press 

students to progressively formalize their ideas using more abstract mathematical ideas. For example, 

first graders might initially solve a problem using cubes and then be guided to represent the situation 

using a bar model or number line, and eventually, with symbolic notations. By asking students to 
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connect several models and methods of their thinking with questions or problem variations, a 

teacher can enable students to progressively formalize their initial ideas. 

FOCUSING ON THE STRUCTURE OF MATHEMATICS (FSM) 

Focusing on structure allows students to understand and establish connections among fundamental 

concepts and particular topics being studied (NCTM, 2000; NGA, 2010). Structure, here, pertain to 

the elements of mathematics that remain constant across grade levels. For instance, the concepts of 

unit, composing, decomposing, iteration, partitioning, equivalence, and relationships are structural 

components for the concept of number. Understanding that the number 28 is composed of two units 

of size 10 and eight units of size one is necessary to understand place value, or that by partitioning 

one into 10 equivalent size units, you get a new unit of one-tenth, which has the relationship of 

iterating itself 10 times to become one. Therefore, focusing on structure helps students see how 

foundational ideas extend across grade levels and topics. By emphasizing connections across 

different topics, students need not be limited to memorized procedures for each particular case and 

can instead solve problems in related contexts. 

Typically, teachers and students perceive mathematics as a series of procedures and definitions that 

increase complexity throughout the K-12 curriculum. Specific fundamental ideas or “structural 

components” appear continually throughout mathematics, whether in second or eleventh grade. 

When instruction does not focus on the structure of mathematics, students often rely on memorized 

tricks or formulas, leading to difficulty in solving complex problems or applying mathematics to new 

situations. The module framework embeds the language of the structural components within each 

lesson in the task and formative assessment design, as well as in the examples of how students might 

articulate and critique their own and others’ mathematical models. 

ADDRESSING MISCONCEPTIONS (AM) 

The fifth dimension involves using students’ mistakes and misconceptions as valuable tools to build 

mathematical understanding (Borasi, 1987, 1994). By focusing teaching practices on the first four 

dimensions of teaching mathematics, teachers shift their attention toward (a) students’ informal 

strategies for solving problems, (b) the mathematical connections to and among multiple 

mathematical models and formal solution strategies, (c) developing a deep conceptual 

understanding, and (d) the structure of the mathematics, which lead to student misconceptions. By 

acknowledging and addressing them, teachers encourage students to make sense of and correct their 

flawed ways of thinking, rather than glossing over them or ignoring them altogether. 

Mistakes often recur even after teachers demonstrate a correct procedure because they can stem 

from deeper mathematical misconceptions. By being aware of why and how misconceptions 

develop and taking the time to address them through models and discussion, teachers can subject 

students to a deeper understanding that precludes such mistakes. Thus, the module framework uses 

a modified version of Webb’s (2002) depth of knowledge levels to introduce mistakes and 

misconceptions that other students might have. This presents relevant tasks each day as an integral 

part of doing mathematics and offers an opportunity for students to engage in justification, 

evaluation, and inquiry (Borasi, 1987). 
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SUMMARY OF THE FIVE DIMENSIONS OF DMT 

The five key elements of DMT grow out of the concept that (a) mathematics comprises underlying, 

inherently related constructs and (b) students learn mathematics by creating web-like or hierarchical 

organizations for these constructs. With the introduction of the CCSS in mathematics, teachers and 

administrators have found that traditional textbooks do not adequately address their needs regarding 

the content, sequence of materials, levels of questioning, and discourse or differentiation (W.H. 

Schmidt, 2012; William H Schmidt & Burroughs, 2013). Many states, such as Georgia and New 

York, have attempted to create curricular units to address these needs. Unfortunately, these 

materials, similar to the NSF-backed reformed curriculum of the 1990s, are different enough in 

terms of content, models, and presentation that teachers will struggle to implement them successfully 

(Obara & Sloan, 2010). Another issue is that these materials do not help teachers address the needs 

of marginalized students or build the adequate language needed to dialectically argue why a 

mathematical model works efficiently for specific situations (Doabler et al., 2012; Moschkovich, 

2012). Therefore, a framework that addresses the five DMT components need to be developed and 

studied. 

DMT INSTRUCTION AND FRACTION EXAMPLE 

As previously described, math achievement can improve teaching for understanding. Still, often, it 

may not occur due to factors such as teachers’ beliefs about mathematics and teaching, their 

knowledge of mathematics and mathematics pedagogy, students’ difficulty with language-rich tasks, 

and students’ lack of perseverance. Based on the five dimensions of DMT’s instructional model, we 

first describe what instruction should be in a classroom and then create a framework to build 

curricular modules that incorporate progressive formalization and mathematizing. Because of the 

empirical evidence that teaching and learning fractions are difficult (Barnett-Clarke, Fisher, Marks, 

& Sharon, 2011; Jinfa Cai & Nie, 2007; Jinga Cai & Silver, 1995; Pitkethly & Hunting, 1996; 

Richland, Stigler, & Holyoak, 2012), we have highlighted instruction on the topic of fractions for 

third graders. 

In an inquiry approach or reformed curriculum, a typical day includes a warmup that takes about 

two minutes, launching a problem-solving situation, student exploration, and a discussion (Stein, 

Engle, Smith, & Hughes, 2008). Several elements are missing, which we address: (a) ways to 

progressively formalize students’ thinking, (b) modeling situations through context and enactive, 

iconic, and symbolic representations, (c) ways to formalize their initial, usually informal, language, 

(d) discussions that allow for critiquing and improving their discourse, (e) conceptualizing the 

problem situations, and (f) focusing on the structure of mathematics. 

Table 1. Overview of a DMT Instructional Lesson 

 

 Focus  DMT Connection 

Warmup 

Skill-Building Start with a 2–5-minute warmup.  

Problem-Solving 
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Problem-

Solving 

Situation 

Task Features 

 

Typically, a contextual problem or visual 

situation wherein a range of informal and 

formal modes of representation can be 

utilized to solve the problem. 

 

Presses students’ cognitively. 

TSIS: 

Enables 

mathematizing and 

progressive 

formalization 

through a task that 

provides multiple 

opportunities to 

examine informally 

and formal 

representational 

modes 

Task Facilitation Structure 

 

Individual & 

Small Group 

Discussion 

Students cognitively engage in the task 

at their level of mathematical 

understanding. 

 

Builds students’ awareness about their 

knowledge and understanding of a 

topic 

 

Allows teachers time to find and, 

when needed, press participants 

individually for particular models 

PSC & EMSM: 

Enables horizontal 

mathematizing through 

individuals’ cognitive 

engagement with a 

contextual problem 

that they must represent 

mathematically 

  FSM, EMSM, & PSC: 

 

 

 

 
Whole-Group 

Discussion 

 
 

Provides a pedagogical example of how 

a whole-class discussion should be led 

 

Presses understanding of and connections 

among multiple models to build 

knowledge 

Presses horizontal 

mathematizing and 

progressive formalization 

through the examination 

of multiple solution 

methods with a 

facilitation focus on 

building connections 

among and progressively 

formalizing multiple ways 

of mathematically 

modeling the situation 

Varied Tasks and Practice 

  EMSM: 
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Varied 

Tasks 

Provides varied tasks with opportunities 

to build skills and understanding of 

different models 

 

Allows students to practice using the 

structure to articulate concepts 

Increases horizontal 

mathematizing and 

ensures concepts are 

understood, and skills 

become efficient; 

mathematical 

language is expanded 

 
Varied 

Practice 

Provides practice for the newly 

developed knowledge by asking students 

to practice with regard to contexts, iconic 

models, and symbolic representations 

FSM: 

Provides an example 

of horizontal 

mathematizing by 

pressing students to 

connect contexts to 

models 

MODULE OVERVIEW 

Overall, each module highlights an overarching historical and cultural theme used to build the 

lessons. In our module, we have highlighted a blank theme. Then, as will be explained in more 

detail below, each lesson (which may take more than 1 class period) will include the following: 

 1-2 minutes of warmup 

 Problem-solving situations 

 Explanation of mathematics concepts and ideas (with historically, culturally relevant, 
and mathematically accurate ideas) 

 Varied tasks (completed in small groups or individually) 

 Varied Practice (enactive, iconic, and symbolic, or context, iconic, and symbolic) 

 A review with different questions after every few lessons (skill, problem-solving, conceptual, and 
justification) will be incorporated as practice and a checkpoint for teachers. We will highlight 
how the discussed module components play out in an instructional setting. 

TASK CREATION OR SELECTION 

The opening problem-solving task should (a) be accessible to students while being challenging, (b) 

allow for multiple ways to model or represent the problem situation, and (c) engage students in a key 

mathematical topic. The following task was used as the starting point for the module on fractions: 

Courtney is making a glaze to apply to the ham. She needs 1/8 cup of coconut sugar and wants 

to know whether it is the same as two 1/4 cups. Explain mathematically whether she is correct 

or not. 
Contexts incorporating misconceptions allow students the chance to explain their thinking by 

modeling with an enactive, iconic, or symbolic representation. This task is accessible and addresses 

equivalent fractions, a critical topic for third graders. 
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INDIVIDUAL AND SMALL GROUP WORK 

This task is performed without any whole class “guidance” from the teacher. Students are allowed 

time to work individually and, after a few minutes, are prompted to work in small groups. Teachers 

are encouraged to group students who solved the task differently among themselves and then 

prompted to ask procedural and conceptual questions: 

 For individuals struggling to figure out how problem-solving should be approached – Is there 
a way to create or draw a diagram representing the situation? 

 For individuals who approached the problem with an “educated” guess and check strategy, or 
verbally – Is there a way for you to notate your thinking to communicate it with others? 

 For individuals who solved the problem symbolically – What would a visual diagram that 
matches your expression or equation look like? 

 For groups with multiple solution strategies within their group – How are the various 
approaches related? Find an element of your problem-solving process in someone else’s 
drawing or table. 

 

This part of task facilitation aims to engage students in a solution path for the task cognitively. This 

allows them to take ownership over the process of problem-solving and builds their explicit 

awareness of their knowledge and understanding of the topic. This makes them more open to 

establishing connections with other solution paths further into the module. In addition, it provides 

the critical perspective that anyone – no matter their knowledge – can understand and solve a 

problem when presented in a manner where multiple solution strategies, including informal 

methods, are both possible and encouraged. In short, this process addresses (a) students’ ideas 

seriously, (b) progressive formalization to build a conceptual understanding, and (c) the initial stages 

of horizontal mathematizing. 

WHOLE-GROUP DISCUSSION 

In addition to posing probing questions for individuals and small groups during task facilitation, the 

teaching module includes possible participant-generated models for a whole-class discussion about 

the task. For this particular task, the module encourages teachers to find three types of models and 

ask three students to present their approaches. If teachers cannot find three model types, they can 

give examples on PowerPoint and ask students to describe what they are observing. Figure 2 

highlights the criteria: (a) fraction rods (Jordan et al.), (b) number line, and (c) equations. 

 

Figure 2: Enactive, Iconic, and Symbolic Models 
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If teachers find a model, which highlights an important idea or relationship, they are encouraged to 

ask students to recreate it on the board for the whole-class discussion. These models are generated 

during small group discussions. During a whole-class discussion, each student is asked to explain 

procedurally what they did to solve the problem. Then, the debate is opened up to the whole class 

to explain similarities and differences among the models and discuss where each model would work 

most efficiently and where it would not. 

For the task, possible questions are generated for the teacher to ask. These formative assessment 

questions are framed using a modified version of Webb’s (2007) depth of knowledge framework. 

Level 1 questions consist of items that require students to produce responses by following a set of 

rote procedures demonstrating procedural skills or recalling information (N. L. Webb, 2002). Level 

2 questions are either conceptual or relate to problem-solving. Problem-solving items require 

students to produce responses to a given situation for which there can be a variety of possible 

solutions or approaches. Solution methods are not readily apparent and need students to decide 

how the problem can be solved (Porter, 2002). Conceptual-type items require students to respond 

by creating models and diagrams or demonstrating an understanding of mathematical properties and 

their applications (N. L. Webb, 2002). Level 3 items necessitate students to justify their reasoning or 

critique the reasoning of others through careful analysis and by explaining and modeling how and 

why a response is either correct or incorrect. Level 3 items may also require models and diagrams to 

support responses (de Lange, 1999). For the example task, the module lists possible questions to ask 

students: 

 Level 1 questions: Explain the steps you followed to solve the problem. What do 4 and 8 in 

one-fourth and one-eighth tell you about the fractions? 

 Level 2 questions: How does the number line model help explain the equation? 

 Level 3 questions: Explain why Courtney is incorrect in her thinking. Mathematically, why 

might Courtney have made her comment? 
 

The models are presented in the typical order from either more informal to formal and from 

enactive to iconic to symbolic. The facilitation pattern initially focuses on describing the solution 

path depicted by the model, followed by establishing connections with other models when 

applicable. Each day, a different set of three students are asked to present their models and answer 

questions during the whole-class discussion. 
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VARIED PRACTICE 

Notably, missing in most curricula are practices for (a) articulating the process both verbally and in 

writing and (b) modeling through iconic and symbolic models and contexts. This enables all 

students’ critical experiences to expand their thinking cognitively and progressively formalize their 

mathematical understanding (Freudenthal, 1991; Moschkovich, 2012). At this point in the lesson 

and throughout the module, students are formally asked to describe their processes and others’ by 

focusing on the structure of mathematics. With regard to fractions, students must understand what 

units are and how they can be decomposed, composed, partitioned, and iterated to form newly 

related or equivalent units. 

After the initial opening task, individual and small group work time, and the whole-class discussion, 

the module takes students through modeling, articulating ideas, and differentiated practice. Here is 

an example: 

 Enactive Model: Take a paper strip (rectangle) and fold it to make four equal parts. Label 

each section as ¼. 

 Iconic Model: Draw a bar model (rectangle) and label it to represent 0, 1, and each ¼ 

section. 

 Articulation: Describe each part of your bar model (Figure 3) with your neighbor using as 

many mathematical words that have been discussed so far in the module (e.g., unit, count, 

unit measure or size, iterate, partition, decompose, compose, etc.). 
 

Figure 3: Iconic Bar Model Representing Fourths 
 

 

Next, students are asked to discuss the following questions with a partner and write their responses in 

sentence form. 

 

Verbal and written form: 

 What does the fraction 1 mean? 
4 

 What about 3? 
4 

 What about 5? 
5 

This offers students the chance to use their own words first, usually informally, before being asked to 

articulate them more formally. Finally, students are given examples of the more formal written 

responses. For example: 

 It takes 4 (1 units) to make 1 and you have counted only 1 of these 1 units. 
4 4 
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 It takes 4 (1 units) to make 1 and you have counted 3 of these 1 units. 
4 4 

 It takes 4 (1 units) to make 1 and you have counted 5 of these 1 units. That means 5 is greater 
4 4 4 

than 1. 
 

Given this feedback, students are asked to read each sentence aloud and then edit their written 

description to fit the newer, more formal form. Students should repeat this process with other 

fractions but with differentiation at this point in the module. Sets of different fractions that are 

easier, slightly more complex, and extended are used during the portion of the lesson. 

Students move to differentiated practice after 2–4 lessons (typically 60 minutes each). Here, students 

are given a 3x3 matrix with four tasks in each column (see Figure 4). Students must solve four 

progressively more complex story problems using iconic and symbolic models to build fluency and 

flexibility. Given four progressively harder iconic models, students must then write a story problem 

that matches the visual model and provide a symbolic representation that matches the visual 

representation. Finally, given four progressively harder symbolic representations, students must 

create a context and visual model for the equation or expressions. The teacher is advised to have 

students solve two of the four tasks from each section. 

 

Figure 4: Differential Practice Tasks 
 

SUMMARY OF DMT’S INSTRUCTION 

By continuing this process over a 3–4-week period, the goal is to create enough situations for 

students to become better problem-solvers, make connections within and outside of mathematics, 

use multiple mathematical models, and reason mathematically (Hiebert & Carpenter, 1992; Hiebert 

et al., 1997; M. A. Simon, 2006). The module framework develops mathematical thinking by 

providing historical or cultural problem-solving situations, space to articulate mathematical concepts 

and differentiated practice with the contexts and mathematical models. 
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