NM Water Resources Research Institute

LEGISLATIVE FINANCE COMMITTEE SAM FERNALD NEW MEXICO WATER RESOURCES RESEARCH INSTITUTE (WRRI) JUNE 27, 2023

Prepared by: Richard Heerema, NMSU, ACES Salim Bawazir, NMSU, ENG Bob Sabie, NM WRRI Connie Maxwell NM WRRI Holly Brause, NM WRRI

Contributors from NMSU: Greg Torell Julia Klejmont Reza Eslamafir Yining Bai Austin Hanson Carolina Mijares Jorge Preciado Kevin Perez Tasnim Shamma Mehdi Manesh

BE BOLD. Shape the Future.[®] **New Mexico State University**

OUTLINE

- 1. Background situation
- 2. Research tools and information
- 3. Coordinated management flexibility
- 4. Strategic Community Water Management Program

BE BOLD. Shape the Future.[®] **New Mexico State University**

Lower Rio Grande Region WPR (Doña Ana County)

Lower Rio Grande Water Planning Region (WPR) (Doña Ana County)

As Surface Water (SW) Availability Declines, Groundwater (GW) Depletions for Agriculture Increase

Exemplifies dynamics of increasing reliance on GW globally

Research & Development

Remote Sensing Coupled with Ground Level Measurements (Satellite-Based ET, Flux Measurements, Climate)

Spatiotemporal Variability of Consumptive Use or ET – Field Scale and Regional Scale

Fallow Farm Field – Hydrology (Infiltration, Evaporation Losses)

Regional Water Budget – Accounting? Collaborative Effort

Coordinated Flexible Management

- Objective: Increase groundwater storage while maintaining agriculture, ecosystems, and communities
- Approach: Use a suite of management techniques to:
 - Increase supply
 - Groundwater recharge
 - Surface water inflows
 - Less groundwater pumping
 - o Reduce demand
 - Conservation
 - Efficient use technology
 - Fallowing and land use management

Improved groundwater recharge through NM WRRI research

- Recharge in flood irrigated alfalfa, pecans, pistachios. 12-81% of applied water
- Diffuse recharge from contributing watersheds
 Up to 3000 acre-ft/year

Current and Future **Strategic** Community Water Management Program

THANK YOU!

BE BOLD. Shape the Future.[®] **New Mexico State University**

Focused recharge

Focused recharge

Recharge in flood irrigated alfalfa fields in the Mesilla Valley, New Mexico, for 2017 was from 37% to 45%. (Boyko et al., 2018)

In Northern New Mexico, total deep percolation on alfalfa fields ranged from 68% to 81% of irrigation water applied contributed to deep percolation. (Conrad et al. 2021)

Deep percolation in flood irrigated pecan field in Mesilla Valley for 2020 was 12% of irrigation water applied and recharge in the drip irrigated field was 4% of total water applied.

Location of recharge research in alfalfa fields in Mesilla valley New Mexico (Boyko et al., 2018).

Diffuse recharge from mountain-front runoff

Rio Grande Transboundary Watershed Model (RGTWM):

•Total recharge from basins between (1940-2015) is **21.73 KAF** and a yearly average of **0.29 KAF**

•Basin 15 and basin 4 are responsible of the 96% of the total recharge

Research needs:

- Approach to increase diffuse recharge: less ET, less runoff
- ·Field measurement of recharge and runoff
- •Better conceptual model to represent surface hydrology in the basins
- •Influence of earth dams and potential benefits of MAR
- ·Ability to project scenarios based on climate change and use of land

Rangeland Watershed Restoration: *Goal - Lower Flood Energy and Drop Sediment Out of Flood Flows*

- **Challenge:** Scouring floods are washing large amounts of sediment into dams and the irrigation system. prevents wide-spread aquifer recharge projects and lowers conveyance capacity.
- **Research need:** We will expect to quantify the most effective practices and extent of restoration needed to achieve stakeholder goals within approximately 2 years (3 awarded NMED projects).
 - Additional study on practices closer the valley is needed (e.g. filtering ponds).
- Paired watershed studies: Subbasins with restoration are paired with control subbasins and critical indicators measured
 - \circ $\,$ We use remote sensing for analysis across scales validated by groundtruthing, including:
 - HEC-RAS 2-D modeling and ground measures of surface flow and sediment transport
 - soil moisture
 - Fine-scale vegetation monitoring groundtruthed by extensive transects
- **Funding opportunity to extend projects:** \$3m Reclamation program proposal (due March 28th) 25%-50% match

Acequia monitoring web interface

0.23

0.23

0.231

0.23

NaN

8.3

8.37

8.51

8.62

8.97

0.889

0.894

0.903

0.91

0.931

08/15/2020 00:00

08/14/2020 00:00

08/13/2020 00:00

08/12/2020 00:00

08/11/2020 00:00

An example of the water data displayed for each acequia on the web interface. In this case, La Cuchilla on 20 August 2020.

Strategic Community Water Management Program Future funding

Rio Hondo – Arroyo Hondo, Valdez, Des Montes

 Request from community to inform water management with sensors, real-time water budget information, technical assistance, data interpretation

San Juan Irrigation District

• Request from community for information to inform irrigation with sensors, water budget interpretation, vegetation management, water quality

Tesuque (Upper Rio Grande)

• Request from community to inform infrequent acequia diversion information

