House Memorial 42: Parkinson’s Disease and Pesticide Exposure

A Review of the Association between Pesticide Exposure and Parkinson’s Disease

Respectfully Submitted by Retta Ward, Cabinet Secretary
New Mexico Department of Health

With contributions from the New Mexico Department of Agriculture

November 7, 2013
Table of Contents

Executive Summary .. 3

Background .. 5

- 2013 Legislative Session .. 5
- Federal Regulation of Pesticides ... 5
- Pesticide Regulation in New Mexico .. 6

Methods .. 8

- Literature Search ... 8
- Inclusion and Exclusion Criteria .. 8
- Data Extraction Form ... 9
- Data Synthesis .. 9

Results ... 9

- Selection of Studies .. 9

1. **Pesticide Exposure without Genetic Interactions** .. 9

 - Pesticides (General) ... 10
 - Organochlorine .. 40
 - Organophosphorus .. 44
 - Botanical .. 46
 - Quaternary Ammonium .. 47
 - Carbamate or Dithiocarbamate .. 49

2. **Pesticide Exposure with Genetic Interactions** ... 51

 - Pesticides (General) ... 51
 - Organochlorine .. 59
 - Organophosphorus .. 59
 - Quarternary Ammonium .. 61
 - Carbamate or Dithiocarbamate .. 63

References ... 64

Data Abstraction Form ... 72
Executive Summary
The NMDOH developed conclusions and recommendations about the potential association of pesticide exposure and Parkinson’s disease (PD) based on the literature assessed. Two main categories were analyzed: studies without genetic interactions and studies with genetic interactions. Within these two categories, the following categories of pesticides were identified: 1) general, 2) organochlorine, 3) organophosphorus, 3) botanical, 4) quaternary ammonium, and 5) carbamate or dithiocarbamate. There were many ways in which the reviewed studies described exposure to pesticides, including spraying pesticides, handling or direct contact, using or applying pesticides, performing jobs likely involving pesticide use, or unspecified exposure such as proximity to agricultural spraying.

To assess the existing epidemiological evidence for the association between exposure to pesticides and PD that could pertain to specific potentially exposed populations, the reviewed studies were grouped into two broad exposure/use categories: 1) exposure with pesticide use specified, including general use (occupational or residential use could not be distinguished), agricultural use (including farming), other occupational use, and residential use (including gardening), and 2) exposure with pesticide use not specified, including in an agricultural setting, in another occupational setting, in proximity to a pesticide use area, and in a residential setting.

Because there are no available data about the specific pesticides historically utilized, the amount, and where these pesticides were used, assessing the risk of pertinent populations in New Mexico is not currently possible. However, the following conclusions and recommendations apply to anyone in New Mexico who uses pesticides.

1. Pesticide Exposure without Genetic Interactions
Of the selected studies which addressed exposure to pesticides and the risk of PD, the majority of the evidence suggested an association between PD and pesticide exposure, including: herbicides and insecticides as well as chemical groups of pesticides such as organochlorine (lindane), organophosphorus (chlorpyrifos), quaternary ammonium (paraquat), botanicals (rotenone), and a mixture of dithiocarbamate (maneb) with paraquat. Furthermore, there appears to be good epidemiologic evidence for the association between the general pesticide use category and PD development. The association between PD and more specific pesticide use settings appears to be inconclusive for 1) agricultural use of pesticides, which included farming, 2) other occupational use, and 3) residential use of pesticides, which included gardening. The majority of the studies falling into the exposure with pesticide use not specified category provided inconsistent and inconclusive evidence for
the association with PD development. This included pesticide exposure with use not specified in agricultural, other occupational and residential settings as well as proximity to a pesticide use area. However, there were other factors which were stronger predictors for PD including family history of PD, head trauma, and lack of smoking. **Recommendations:** 1) Individuals who decide to use pesticides should first protect themselves and others from exposure by following the directions for application that are appropriate for the given pesticide. Gardeners who want to reduce the amount of pesticides they use may wish to learn more about Integrated Pest Management (IPM) principles: http://aces.nmsu.edu/pubs/_circulars/cr-655/welcome.html. 2) Under the federal Worker Protection Standard, agricultural workers and pesticide handlers must be trained and informed about pesticides used on the establishment. Violations should be reported to NMDA.

2. **Pesticide Exposure with Genetic Interactions**

Among selected studies which addressed the effect of exposure to pesticides on genetically susceptible individuals/populations for the development of PD, the majority of the evidence on the genes studied suggested that genes modulated the risk between pesticide exposure and the risk of PD. These studies suggested that genotypes may interact with pesticide exposure to increase the risk for PD. Specific pesticides involved in gene-environment interactions with the development of PD included organophosphorus insecticides (specifically, chlorpyrifos and diazinon), the quarternary ammonium herbicide paraquat, and a mixture of maneb (dithiocarmbamate) with paraquat. Specific genotypes implicated in these interactions included CYP2D6, MDR1, MnSOD, NQ01, NOS1 SNPs, GSTT, PON1, DAT, and GSTT1. Other factors that play a role in PD include family history of PD, head trauma, and smoking status. Some individuals may be more susceptible to PD with pesticide exposure than others based on specific genes. **Recommendation:** 1) Individuals who decide to use pesticides should first protect themselves and others from exposure by following the directions for application that are appropriate for the given pesticide. Gardeners who want to reduce the amount of pesticides they use may wish to learn more about Integrated Pest Management (IPM) principles: http://aces.nmsu.edu/pubs/_circulars/cr-655/welcome.html. 2) Under the federal Worker Protection Standard, agricultural workers and pesticide handlers must be trained and informed about pesticides used on the established. Violations should be reported to NMDA.
Background

2013 Legislative Session
During the 2013 legislative session, House Memorial 42 (HM 42) passed, which identified public concerns about pesticide exposure and the development of Parkinson’s disease (PD). This memorial requested a review of the historical agricultural use of pesticides by the New Mexico Department of Agriculture (NMDA) and a review of the pertinent scientific literature on the relationship of pesticide use and the development of PD by the New Mexico Department of Health (NMDOH). Using this information, the NMDOH was directed to prepare a report assessing the risk of pertinent populations of New Mexicans with recommendations, as appropriate. This document incorporates information provided by NMDA and provides the methods utilized to conduct a systematic review of the literature as well as the resulting findings and recommendations.

Federal Regulation of Pesticides
The United States federal government passed the first laws regulating pesticides in 1910. The Insecticide Act, as it was known, was intended to protect consumers from impure or fraudulently labeled insecticides and fungicides. The Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) replaced it in 1947, requiring for the first time that all pesticides be registered and labeled according to minimum standards. It wasn’t until 1970 that Congress created the US Environmental Protection Agency (EPA) and transferred administration of FIFRA to it from USDA.

Since then there have been many changes to the laws governing the registration, labeling, and use of pesticides. Before 1974, there were no standards for worker reentry into pesticide treated fields, and thus the agricultural worker protection standard was passed in 1992. Many pesticides have disappeared and new, safer chemicals – for pesticide workers, the public, and the environment – have been developed. In general, modern pesticides are effective at lower rates, are safer to apply, and have fewer side effects or unintended consequences in the environment.

Under FIFRA, EPA registers pesticides and prescribes label directions to prevent unreasonable adverse effects on human health or the environment. Under the Federal Food, Drug and Cosmetic Act (FFDCA), EPA establishes tolerances (maximum legally permissible levels) for pesticide residues in food. Tolerances are enforced by the Food and Drug Administration’s Health and Human Services Department and the US Department of Agriculture’s Food Safety and Inspection Service. In 1996, Congress passed the Food Quality Protection Act (FQPA). This law sets a "reasonable certainty of no harm" standard when setting tolerances for pesticides in food. It requires EPA to periodically re-evaluate existing registrations and tolerances to make sure they meet the requirements of current standards. By 2006
EPA reviewed nearly 10,000 tolerances, recommending the revocation or modification of 4,600 tolerances and confirming the safety of 5,200 tolerances.

Agricultural workers and pesticide handlers are protected under the federal Worker Protection Standard, which requires employers to train and inform their people about the pesticides used on the establishment. Appendix I, provided by the NMDA, lists the pesticides of most interest to the public group Pesticides and Parkinson’s Committee (PPC), the class of the pesticide, and historical use. Therefore, the list is not meant to be comprehensive of all pesticides ever used. Additionally, the NMDA does not have information which would allow an historical assessment of how much of each pesticide was used and where. Appendix III, also provided by the NMDA is a report conducted by the United States Geological Survey (USGS). The document describes a method which could be used to calculate annual county-level pesticide use for selected herbicides, insecticides, and fungicides applied to agricultural crops grown in the conterminous United States from 1992 through 2009.

Pesticide Regulation in New Mexico

In New Mexico, pesticides and pesticide applicators are regulated by the Pesticide Control Act, administered by the NMDA. Rules promulgated under this law govern pesticide registration, the licensing of pesticide applicators, recordkeeping requirements, standards for use, storage and disposal of pesticides, penalties for noncompliance, inspection of application equipment, and applicator safety. Pesticides comprise a wide range of substances designated to deter or kill insects (insecticides), rodents (rodenticides), plants (herbicides), fungi (fungicides), etc. Pesticides also have subclasses based on their chemical components (e.g., organophosphate) or their application method (e.g., fumigant).

Registration

All pesticides must be registered with NMDA before they can be distributed or used in the state. Any product that claims to control, mitigate, or repel a pest is a pesticide, including insecticides, herbicides, fungicides, rodenticides, disinfectants, sanitizers, insect repellents, microbial pesticides, desiccants, and more. This includes consumer products like insect repellent, weed killers, sanitizers, wasp sprays, etc., purchased at big box stores, grocery stores, and drug stores, in addition to pesticides purchased and used by agricultural producers and professional pest control applicators. There are approximately 11,000-12,000 pesticides registered annually with NMDA. These products are formulated from an estimated 1,100 active ingredients.

Registered pesticides may be restricted – available for purchase and use only by certified applicators – by either federal or state law. Products restricted by federal law are automatically
restricted in the state. Certain 2,4-D herbicides that are not federally restricted are restricted in New Mexico by state law. About eight percent of federally registered pesticides are restricted.

Licensing

Any person who wants to purchase or use a restricted pesticide must be certified and licensed through NMDA. In addition, anyone who applies any pesticide for hire must hold a commercial applicator or operator/technician license. Currently there are about 7,600 individuals licensed in New Mexico. Nearly 3,000 of those individuals are licensed with commercial businesses that perform pest control for hire.

Federal and state laws require applicators to 1) use only registered pesticides and to follow all label directions 2) keep records of pesticide applications 3) only apply pesticides in categories they are certified in; and more.

Inspection/Enforcement

Federal and state laws require that dealers sell restricted pesticides to licensed applicators only. Applicators must follow all label directions; keep records of their pesticide applications; only apply pesticides in categories they are certified in; not be careless or negligent in their use of pesticides; and more.

NMDA inspects those businesses that sell pesticides. In addition to pesticide dealers who sell restricted pesticides, markets like feed stores, hardware stores, box stores, discount stores, garden centers, and others are inspected to make sure the pesticides for sale are registered and are displayed, stored and sold safely and in accordance with federal and state laws.

NMDA inspects pesticide applicators. Inspectors verify they are applying pesticides in accordance with the product labels and with state and federal law. Agricultural establishments are also inspected to assure compliance with the Worker Protection Standard. Although some inspections are conducted during a pesticide application, most compliance monitoring is based on the records kept by the applicators.

NMDA investigates an average of about 35 complaints a year alleging pesticide misuse, drift, or other violations. When violations can be documented NMDA takes enforcement action against the applicator. Complaints may involve damage to non-target plants, personal exposure, ineffective pest control, or licensing issues.
Methods

Literature Search
The NMDOH conducted a systematic search for relevant information in the scientific literature via the search engine PubMed (http://www.ncbi.nlm.nih.gov/sites/entrez?db=PubMed). In order to reduce the chance that information supporting a particular conclusion would be preferentially identified while other information was missed, the literature search was designed to be as comprehensive as possible. The search was conducted in July 2013 to identify all peer-reviewed articles published before that date. Key and free-text words included “Parkinson’s disease,” “pesticide,” “insecticide,” “fungicide,” and “rodenticide.” In addition to the articles identified through PubMed, the public group PPC also submitted articles for potential inclusion. In order to allow enough time to review articles, the deadline for the public to submit articles was August 2, 2013.

Inclusion and Exclusion Criteria
Because the focus of HM 42 is on the association between pesticide exposure and PD development, the NMDOH included studies (whether through PubMed or submitted by the public) if they addressed health outcomes among people. To be included, the studies had to address not only PD but also pesticide exposure. For this review, articles were included if they focused on PD. The signature signs and symptoms of PD include bradykinesia,1 resting tremor,2 cogwheel rigidity,3 and postural reflex4 impairment. Only peer-reviewed journal articles, government agency reports, and reports from nationally or internationally recognized organizations and authorities in public health such as the World Health Organization (WHO) were included for review. The scientific peer-review process ensures the quality and relevance of research activities, and helps maintain scientific objectivity and credibility. Government agencies have internal procedures and processes which guide reviews.

Articles were excluded if they met any of the following criteria: 1) animal model (anything but human), 2) cell lines or cell cultures, 3) treatment/protective factors, 4) no measures of association (odds ratio, relative risk), 5) miscellaneous (no pesticide exposure or PD not addressed; mechanism of action study; biomarkers of exposure; case report (report of a single case of PD); predictive toxicity (extrapolation of animal toxicity data to predict human effects or extrapolation of toxicity based on chemical structure); letter to the editor; summary of conference), or 6) article written in language other than English. Additionally, we excluded review articles that summarized original articles that we have

1 Slowness of movement
2 Tremor that occurs when muscle is relaxed
3 Increase in muscle tone causing resistance to externally imposed joint movements
4 Automatic movements that control equilibration when the body is upright and moving
already included, except for those reviews that attempted to evaluate the level of evidence for the association between exposure to pesticides and PD development.

Data Extraction Form

Eight epidemiologists from NMDOH extracted data from the studies selected for review and recorded the information on a standardized form (see end of report). Extracted data included information about study participants such as race/ethnicity, age, and sex, measure of association (odds ratio), statistically significant findings, and any recommendations the study made.

Data Synthesis

Two of the epidemiologists working on the data extractions also conducted the data synthesis and analysis. Data from the extraction form were summarized into two main categories of PD articles: 1) pesticide exposure without genetic interactions and 2) pesticide exposure with genetic interactions.

Results

Selection of Studies

Through the PubMed search, a total of 1547 potentially relevant publications were identified (Appendix I). In addition, 94 article titles were submitted by the PPC for review. Of these, 13 articles had been duplicated within the PPC document, 29 were excluded based on our criteria, and 52 were possible inclusions. Of the 52, 51 were already included in the PubMed search results. Thus one article was added to bring the total of articles to review to 1548. Of these, 1444 were excluded based on the previously identified inclusion/exclusion criteria. The final list of articles that were included for this review can be found in the References section of the report.

1. Pesticide Exposure without Genetic Interactions

Of the selected studies which addressed the association between pesticide exposure and Parkinson’s disease without investigating genetic interactions, there were four categories: 1) pesticides (general): specific pesticide not identified (includes general categories such as insecticide, fungicide, herbicide), 2) organochlorine, 3) organophosphorus, 4) botanical, 5) quaternary ammonium, and 6) carbamate or dithiocarbamate.

There were many ways in which the reviewed studies described exposure to pesticides, including spraying pesticides, handling or direct contact, using or applying pesticides, performing jobs likely involving pesticide use, or unspecified exposure such as a proximity to agricultural spraying.
To assess the existing epidemiological evidence for the association between exposure to pesticides and PD that could pertain to specific potentially exposed populations, we grouped studies into two broad exposure/use categories: 1) exposure with pesticide use specified, including general use (occupational or residential use could not be distinguished), agricultural use (including farming), other occupational use, and residential use (including gardening), and 2) exposure with pesticide use not specified, including in an agricultural setting, in another occupational setting, in proximity to a pesticide use area, and in a residential setting.

The studies are summarized here by the type of pesticides evaluated for potential association with PD. The studies presenting positive associations between pesticide exposure and risk of PD are summarized first.

Pesticides (General)

Of the 61 studies analyzing an association between general exposure to pesticides and PD development, 35 provided statistically significant evidence to support this association and 26 studies did not have statistically significant evidence. Herbicides and insecticides as functional categories of pesticides each had the same number of studies associated with increased risk of PD (n=7). Out of the seven studies reporting increased risk of PD due to herbicide use, statistically significant ORs ranged from 1.33 to 4.1, with the highest OR involving occupational, long-term exposure greater than 20 years compared with no exposure. Among seven studies reporting increased risk of PD due to insecticide use, statistically significant ORs ranged from 1.53 to 5.81, with the highest OR involving exposure lasting 10 years or longer, as compared to those with less than 10 years’ exposure. Fungicides had the least number of studies (n=2), with ORs of 2.2 and 5.6. The remainder of the studies with a positive association fell under the general pesticides category. Out of these studies, there were statistically significant ORs ranging from 1.21 to 17.12. However, the study finding the OR of 17.12 did not adjust for family history of PD, which had an OR of 21.4. The next highest OR was 5.63.

There appears to be good epidemiologic evidence for the association between the general pesticide use category and PD development; of the 26 studies falling into this exposure/use category, 17 studies reported a positive association with the risk for PD and 9 did not. The association between PD and pesticide use appears to be inconclusive for 1) agricultural use of pesticides, which included farming (of the 14 studies, 6 reported a evidence for the association and 8 did not), 2) other occupational use (of the 16 studies, 9 reported positive evidence and 7 did not), and 3) residential use of pesticides, which included gardening (of the 6 studies falling into this pesticide use category, 3 studies provided a positive association with PD and 3 did not).
The majority of the studies falling into the pesticide use not specified category provided no evidence for an association with PD. This included pesticide use not specified in agricultural, other occupational and residential settings as well as proximity to a pesticide use area.

For all of these studies, factors that tended to increase the risk of PD due to pesticide exposure included increased duration and frequency of exposure, family history of PD, and head trauma. Smoking appeared to act as a protective factor, decreasing the risk of PD. Studies with occupational exposure tended to have a longer duration/frequency of pesticide use compared to residential exposure such as gardening. Collectively, the studies support a multifactorial etiology of PD, influenced by family history of PD, head trauma, and pesticide exposure.

The limitation of the studies included exposure misclassification, recall bias, small sample size, and competing risk factors that may not have been taken into consideration through statistical analyses. For example, with respect to recall bias, many studies mentioned that PD patients were more likely to recall pesticide exposure compared to controls. For competing risk factors, at least one paper demonstrated that farming as an occupation was an independent risk factor for PD, regardless of pesticide exposure status.

Positive association

The studies which, for the most part, found a positive and statistically significant association between general pesticide exposure and risk of PD are summarized here. In some cases, however, the studies were mixed with both positive and no associations. A positive association means the authors found an increased risk [odds ratio (OR) or relative risk (RR) over one (1)] of PD among those exposed to pesticides compared to unexposed individuals. Confidence intervals (CI) that include one (1) indicate that the association is not statistically significant.

Golbe and co-authors (1990), conducted a case-control study, which mainly focused on nutritional/dietary risk factors for PD, however, they also investigated the association between PD and rural living or pesticide use. This study involved 106 PD patients with spouses as controls (71 males and 35 females). Pesticide exposure (assessed by a telephone-administered questionnaire) was positive if respondents answered yes to the question “sprayed pesticides or insect spray at least once a year for five years?” PD development was associated with pesticide exposure (OR=7.0, p<0.05).

Butterfield et al. (1993) conducted a case-control study of PD but instead focused on young-onset Parkinson’s disease (YOPD). The authors chose this population in order to minimize recall bias (shorter life history to remember) and on the premise that early PD may be associated with higher exposures. YOPD patients diagnosed before the age of 50 (n=63) were frequency-matched on sex, year
or birth, and year of diagnosis with rheumatoid arthritis patients (RA) in the Oregon-Washington region of the US. There was a higher proportion of YOPD cases with a family history of PD and more non-whites among RA controls than the YOPD group. A questionnaire was used to assess exposure and employment history. YOPD subjects with a history of farm employment or residency, had a mean of 10.6 years of exposure compared with a mean of 6.4 years for controls (t-test p=0.101). Logistic regression models were used to estimate the YOPD risk associated with exposure to pesticides at a frequency of more than 10 times a year in any one year (insecticides, herbicides, and fumigants). The ORs were adjusted for age, age at diagnosis, race, sex, educational level and family history of PD. The risk for YOPD was statistically significantly associated with exposure to three pesticide classes: herbicides (OR=3.46, p=0.011; adjusted odds ratio (aOR)=3.22, p=0.033), past residency in a fumigated house (OR=3.29, p=0.068; aOR=5.25, p=0.045) and exposure to insecticides (OR=4.04, p=0.002; aOR=5.75, p=0.001). There was no statistically significant association between YOPD development and exposure to fungicides (crude OR=1.50, p=0.742), rodenticides (OR=2.42, p=0.618), and “ever lived within ¼ mile of agricultural spraying?” (OR=1.99, p=0.106). Logistic regression analysis comparing the relative strength of association between insecticides and herbicides exposure found adjusted ORs of 4.84 for insecticides (p=0.008) and 1.53 for herbicides (p=0.510), when both variables were modeled simultaneously.

Semchuk et al. (1993) conducted a population-based, case-control study to test the hypothesis of multi-factorial etiology of PD development, using occupational and chemical exposure data, medical, and smoking history data, and family history of PD and essential tremors in Calgary, Canada. There were 130 cases (75 males and 55 females) with neurologist-confirmed idiopathic PD and two community controls of 260 subjects (150 males and 110 females) matched by sex and age (± 2.5 years). Exposure and family history information was obtained by personal interview. Occupational and chemical exposures included exposure to pesticides (herbicides, insecticides, and fungicides), work-related exposure to aluminum, carbon monoxide, cyanide, manganese, mercury, mineral oils, and ionizing radiation. Information on family history of PD and essential tremor, smoking, and history of various viral and other medical conditions was collected together with a detailed lifetime occupational history, including exposure dates and descriptive information on all work-related contact with pesticides and other chemicals. Occupational and chemical exposures were coded for the period between the subject’s 16th and 55th birthdays and for each 10-year age interval between the subject’s 16th and 55th birthdays. Both univariate and multivariate conditional logistic regression analyses methods were used to estimate the risk for PD (crude and adjusted ORs, respectively) associated with the following
variables: family history of PD, previous head trauma, exposure to herbicides, family history of essential tremor, and smoking status. The crude OR for herbicide exposure was 3.06 (CI=1.34-7.00, p<0.01). When adjusted for different combinations of the variables previously cited, the adjusted ORs ranged from aOR=2.83 (CI=1.13-7.06, p<0.05) to aOR=3.09 (CI=1.27-7.56, p<0.05). When all five variables were included in the model, family history of PD was the strongest predictor of PD risk followed by history of head trauma. The results of this analysis demonstrate that the ORs for PD remained at approximately three, even after controlling for the effects of the other variables, such as family history of PD and previous head trauma. The authors concluded that their results support the hypothesis of a multifactorial etiology of PD, which likely involves genetic, environmental, head trauma and possible other factors.

Hubble and co-authors (1993) conducted a small case-control study in Kansas involving two sites: one rural (Hays) and one urban (Kansas City) to investigate the effect of rural residency on the development of PD. In the urban population, there were 32 cases and 31 controls. In the rural population, there were 31 cases and 44 controls. All subjects were examined by a neurologist and the PD diagnosis was based on the presence of two or more of the cardinal signs of PD (i.e., tremor, rigidity, and bradykinesia) and responsiveness to the PD drug, levodopa. Patients with historical signs or symptoms of neurological disorders were excluded. Information on exposure factors was collected by self-administered questionnaire and included ever living or working on a farm, pesticide use for more than 20 days for any one year, pesticide use for more than 20 days for 5 years, living or working on a farm with livestock, smoking more than 100 cigarettes during a lifetime, head trauma, having received professional help for depression, and others. Lifetime occupational histories were obtained. Rural living was defined as residency in a town of less than 2500 population. Logistic regression modeling was conducted on the pooled data from urban plus rural sites. However, rural living was so common among subjects in the control (urban) site (51% had lived in a rural setting for more than 20 years) that it did not serve to distinguish controls from patients. On the other hand, pesticide exposure emerged as a variable distinct from rural living and served as a strong predictor of PD among these subjects. Three significant predictors of PD emerged in order of the strength of their association with PD: pesticide factor (used pesticides for more than 20 days in any given year and having done so for more than 5 years), reported family history of neurologic disorders, and history of depression. When all three predictors were positive, the probability for PD in the subject was 92.3% (OR=12.0). Pesticide use had an OR of 3.42 (CI=1.27-7.32, p=0.0041) in the stepwise logistic regression. Several variables were not predictive of PD: head trauma, ethnicity, history of central nervous system (CNS) infection, and fresh
produce consumption, but the sample size was also small. Recommendations included investigation into the identity of specific chemical agents that may be responsible for the development of PD and exploration of the nature of familial influence.

A case-control study conducted in a geographically defined horticultural region in Okanagan Valley, British Columbia aimed to identify possible risk factors for idiopathic PD (Hertzman et al., 1994). There were 127 PD cases (71 males and 56 females) and 245 controls (140 males and 105 females), categorized into two groups: 121 subjects (80 males and 41 females) with chronic cardiac disease (CD) and 124 randomly selected voters (60 males and 64 females). There was approximately the same number of males and females within the different age groups. There were similar years of residence in the Okanagan Valley for all groups. The occupational exposure questionnaire included questions on 79 different agricultural chemicals used in the tree fruit industry, including: 1) any pesticide; 2) specific pesticides: paraquat, azinphos-methyl, ferbam, phosalone; and 3) pesticides grouped into: chlorophenoxy compounds (chlorophenoxyis), organochlorines, organophosphates, carbamates, borates, copper salts, dithiocarbamates, insecticides, herbicides, fungicides, and acaricides. Exposure was defined as handling the chemical or working in an area that had been recently sprayed with the chemical. Full occupational history information was collected. Separate analyses were conducted for PD vs. CD and PD vs. voters groups using logistic regression and adjusting for sex and age. The study found a statistically significant association between PD in men and having an occupation in which there was probable exposure to pesticides through handling or direct contact. However, no specific pesticide exposure was associated with PD development for either gender. For men’s exposure to pesticides, the aOR was 2.03 (CI=1.00-4.12) compared with CD controls; aOR=2.32 (CI=1.10-4.88), compared with voters. For women’s exposure to pesticides, aOR=1.11 (CI=0.32-3.80) for comparison with CD controls and OR=1.36 (CI=0.48-3.85) as compared with voters group. There were no statistically significant findings when exposure was grouped by specific pesticides or occupation. The authors concluded that although occupational exposure to agricultural chemicals may predispose individuals to the development of PD, the pathogenesis is multi-factorial rather than related to any specific chemical. The authors were concerned with recall bias and therefore they used two control groups, assuming that patients with chronic diseases may be more introspective and therefore, more likely to identify past exposures. They also noted that educational attainment may correlate positively with the ability to recall the name of the pesticide and negatively with the level of exposure to the pesticide. Thus, they recommended that future studies should control for these factors.
Semchuk and Love (1995) examined the effects of exposure misclassification in proxy-derived data on agricultural work, pesticide use, rural living, well water drinking, head trauma, smoking status, and family history of PD or essential tremor on Parkinson's disease risk estimates. The data were collected in 1989 as part of a population-based case-control study of PD in Calgary, Canada. For each neurologist-confirmed PD case, two matched (by sex and age) community controls were randomly selected. Forty cases and 77 controls were randomly selected as index respondents. The cases, controls, and one proxy respondent (spouse or offspring) for each index respondent were interviewed using a structured questionnaire. The data were analyzed using conditional logistic regression. Odds ratios estimated the risk of PD associated with environmental variables (rural living, farm living and well water drinking), agricultural variables (agricultural work, crop farming, grain farming, herbicide use, insecticide use, and fungicide use), and other variables (family history of PD, head trauma, family history of essential tremor, and smoking status). Incorporation of proxy-derived data for 30% of the cases and controls, or both, resulted in misclassification of exposure for some variables, in some cases leading to considerable attenuation of the ORs. The adjusted PD risk estimates were calculated for the three probable risk factors (herbicide use, family history, and head trauma) when only self-respondent data were used and when the analysis was replicated using proxy-derived data for about 30% of the cases and controls. Specifically, the study results show that the adjusted odds ratio for PD development and herbicide use was 3.09 (CI=1.27-7.56) when only self-respondent data were used for the analysis and the adjusted ORs remained reduced for the mixed self- and proxy-respondent data use situation. In summary, the study results indicate that pooling dichotomously classified data derived in part from self- and proxy respondents may result in biased estimates of PD risk associated with agricultural exposure (including pesticide use), family history of PD, and head trauma.

A case-control study conducted in Germany investigated a number of potential etiologic factors for PD development, including exposure to pesticides (use of herbicides, insecticides, organochlorines, alkylated phosphates and carbamates), farming activity, well-water drinking, exposure to wood preservatives, head trauma, the number of previous episodes of general anesthesia, and other factors such as the number of amalgam fillings (Seidler et al., 1996). PD cases (n=380) from 9 neurological clinics across Germany were recruited for the study and 379 neighborhood controls and 376 regional controls were enrolled. The cases were determined by using the UKPDS Brain Bank clinical diagnostic criteria. A detailed residential history was taken from each participant. To assess pesticide exposure, participants were asked about years of pesticide application and frequency of use. Then, a toxicological expert categorized all pesticides named by subjects with regular pesticide use, which fell into five groups:
organochlorines, alkylated phosphates and carbamates, inhibitors of cellular metabolism (cellular respiration, enzyme activity, membrane excitation), and “other” category. Occupational exposure was assessed by "ever" versus "never" exposure to a list of neurotoxic substances. In addition, a job exposure matrix was constructed for job titles and industries named by participants. Smoking and educational status were included as covariates in the multivariate analyses to adjust for potential confounding; both variables were strongly inversely associated with PD. Therefore, ORs were adjusted for smoking and educational status, for patients vs. neighborhood control subjects, and for patients vs. regional control subjects. The study showed a significantly increased OR for pesticide usage and the risk of PD, but none for rural factors. Duration of herbicide and insecticide use prior to PD diagnosis showed a positive trend across the number of exposure years; however, the ORs and p-values for trend were statistically significant only in the comparison with regional controls. The study found that PD patients were more likely than control subject to have used herbicides (aOR significant only for comparison with regional control subjects for exposure duration of 41-80 years (aOR=3.0, CI=1.5-6.0), insecticide (aOR significant only for comparison with regional control subjects for exposure duration of 1-40 years (aOR=1.8, CI=1.1-2.7) and 41-80 years (aOR=2.5, CI=1.4-4.5). The authors also analyzed the risk of PD for organochlorine and organophosphate exposures. These results are provided in subsequent sections. A dose-response gradient was seen with increasing number of exposure years to wood preservatives (ever vs. never), but that trend was not statistically significant. The gradient was more pronounced when exposure was considered only for 15 years prior to PD diagnosis. The authors concluded that environmental factors may play a role in the etiology of PD, possibly acting through a genetic predisposition. They recommended conducting more precise exposure assessments, possibly involving biological monitoring for newly diagnosed PD cases as well as setting up a population-based PD registry to capture the disease incident rates, which would likely approximate a prospective assessment of PD risk factors.

A case-control study by Gorrel et al. (1998) investigated exposure to pesticides (herbicides, insecticides, and fungicides), farming, well water use, and rural living as the risk factors for PD. Cases and controls were drawn from residents of the tri-county metropolitan Detroit area who were receiving primary medical care form the Henry Ford Health System (HFHS). Cases (n=144) diagnosed by staff neurologists were selected from the HFHS databases. Controls (n=464) were frequency matched on sex, race, and age. Controls who reported any of eight symptoms of potentially undiagnosed PD were excluded. Participants were administered a risk factor questionnaire by trained interviewers face to face. The questionnaire focused on occupational history but also included questions on pesticide use
and farming. Logistic regression was used for the analysis. Exposure to herbicides and insecticides at work was significantly greater for PD patients than for controls (i.e., for occupational herbicide exposure, aOR=4.10, CI= 1.57-12.24, p=0.012; for insecticide exposure aOR=3.55, CI= 1.75-7.18, p<0.01); but there was no association between PD and exposure to fungicides (aOR=1.60, CI= 0.47-5.45, p=0.453). The association with PD was greater in those with ≥ 10 years of occupational exposure to insecticides (aOR=5.81, CI= 1.99-16.97) compared to those with < 10 years of exposure (aOR=2.39, CI= 0.89-6.40). Farming was also significantly associated with PD (OR=2.79; CI= 1.03-7.55). Farming as a variable was found to be independent from the pesticides exposure variable: the OR for farming was relatively unchanged after adjusting for any of the three pesticide classes. Furthermore, the association between occupational exposure to herbicides and the risk for PD increased dramatically for those with 10 or more years of well water exposure (increase from OR= 4.10 to OR=13.98, CI=1.46-133.53). There was, however, no statistically significant association between the risk for PD and exposure to residential spraying of insecticides (OR=1.02, CI=0.62-1.65, p=0.951; aOR=1.03, CI=0.63-1.70, p=0.92) nor while gardening as a hobby (for exposure to herbicides, insecticides, or fungicide aOR=1.39, CI=0.84-2.28, p=0.200; aOR=0.90, CI=0.58-1.38, p=0.619; and aOR=0.96, CI=0.55-1.66, p=0.879, respectively), or as a resident or worker on a farm (for exposure to herbicides, insecticides, and fungicides aOR=1.64, CI=0.70-3.82, p=0.253; aOR=1.28, CI=0.69-2.40, p=0.435; aOR=0.96, CI=0.29-3.12, p=0.944; respectively).

In summary, the results of this study show a significant association of occupational exposure to herbicides and insecticides with PD and no association between the risk for PD and residential spraying of insecticides or gardening or being a resident or worker on a farm.

Priyadarshi et al. (2000) searched a medical abstract database for articles about exposure to or use of pesticide or both (i.e., pesticide use and exposure) and PD as of August 1999 to conduct a meta-analysis. Articles were excluded for the following reasons: 1) language was other than English, 2) pesticide not included as a risk factor, 3) duplication of the studies with same cohort, 4) insufficient data for determining an estimate of relative risk or a confidence interval, 5) disease studied was not specifically designated as PD. A total of 19 case-control studies from various countries were examined. The OR for the studies reporting positive association between PD and exposure to pesticides ranged from 1.1 to 7 and included a total of 2110 PD cases; eight of these studies reported estimated ORs that were statistically significant. Significant heterogeneity was detected among the studies (p<0.01). The random-effect model including all studies yielded a combined OR of 1.94 (CI=1.49 – 2.53). For those studies conducted only in the US, the OR was 2.15 (CI=1.14-4.05).
Ritz et al. (2000) conducted an ecological study using death certificate data in California. There were 7516 deaths with an underlying cause of PD for the study time period (1984–1994) and 15,222 deaths with PD mentioned as a contributing cause of death for the same time period (except for 1994, when contributing cause data were not available). Exposure to pesticides was categorized by county based on pesticide use reports, and then agricultural census data were employed to create measures of land per county treated with pesticides. Prevalence odds ratios (PORs) were used to estimate the risk of pesticide exposure for PD mortality compared to death from (underlying) ischemic heart disease (n=498,461). Logistic regression models were used to control for the effect of age, sex, race, birthplace, year of death, and education. The POR for residents in low, moderate or high restricted pesticide-use counties compared to long term-residents of no agricultural pesticide-use counties were 1.52 (CI=1.35 – 1.72), 1.49 (CI=1.31 – 1.69) and 1.49 (CI=1.30 – 1.71), respectively. While an elevated risk was observed, a dose-response was not.

Priyadarshi et al. (2001) conducted a meta-analysis of case-control studies examining the associations of rural living, well water drinking, farming, and exposure to pesticides with PD. For the pesticide studies the number of cases ranged from 38 to 224 and the number of controls ranged from 38 to 464. The number of females and males were similar in both cases and controls in most studies. Of the 14 studies that examined the association of exposure to pesticides with PD, one study showed a negative association, two studies showed no association and the remaining 11 studies reported a positive association. The random-effect model including all studies yielded a combined OR of 1.85 (CI=1.31 – 2.60). For studies conducted in the United States, the combined OR was 2.16 (CI=1.95 – 2.39). The overall conclusion from this study was the risk of PD increased with longer exposure duration to pesticides.

Zoron et al. (2002) carried out a case-control study to investigate the association of familial and environmental risk factors with PD. Neurologist-confirmed cases of PD (n=136) were age- and sex-matched, with 272 controls affected by neurological diseases unrelated with PD. The risk of developing idiopathic PD was associated with the following factors: positive family history of PD, positive family history of essential tremor (ET), age of mother at subject’s birth, rural birth, rural living, well water use, farming as an occupation, exposure to pesticides, head trauma, exposure to general anesthesia and to ionizing radiations, food restriction, concentration camp imprisonment and smoking status. Of 136 cases, 74 were women. In the conditional multiple logistic regression analysis, the following factors increased the risk for PD: positive family history of PD (OR= 41.7, CI=12.2 -142.5, p<0.0001), positive family history of ET (OR=10.8, CI=2.6-43.7), age of mother at subject's birth (OR=2.6, CI=1.4-3.7,
p<0.0013), farming as an occupation (OR= 7.7, CI=1.4-44.1, p=0.0212) and well water use (OR=2.0, CI=1.1-3.6, p=0.0308. Smoking showed an inverse relationship with PD (OR= 0.7, CI=0.4-1.1, p<0.06). After adjusting for smoking, exposure to pesticides (aOR=1.6, CI=1.0-2.4, p=0.035) and rural living (aOR =1.5, CI=1.0-2.4, p=0.044) were no longer significant. The mean length of exposures to pesticides was significantly different in cases and control subjects (4.1 years, SD 10.9 and 2 years, SD6.4, respectively; p<0.05). The mean length of exposure to well water use was significantly longer in cases (5.7 years, SD 13.2) when compared to control subjects (2 years, SD6; p<0.01).

Baldi et al. (2003b) conducted a prospective cohort study of 1122 men and 1670 women. Occupational and environmental exposure to pesticides and PD or Alzheimer’s diagnosis was assessed by questionnaire. Nineteen job titles for 320 subjects were estimated to involve non-null pesticide exposure. In men, the risk of PD was associated with pesticide exposure (aRR=5.63, CI=1.47-21.58); no association was found for women.

Baldi et al. (2003a) conducted a case-control study of residents in two regions in Southwestern France. Cases were 70 years old, over and lived in the study regions at the time of interview, and were recruited through area hospitals. Cases were matched 1:3 with controls for age and sex. Controls were enrolled in the PAQUID study – a study on pathological cerebral aging and loss of independence in the elderly. PD status was excluded for controls based on a symptom questionnaire. The agricultural study region largely included vineyards, where fungicides were used heavily, as compared to insecticides or herbicides. Occupational exposure was assessed through the gathering of occupational histories and having engineers to construct a job exposure matrix, rather than relying on subjects’ recall. For occupational exposure, there was an increased risk for PD, when taking into account age, sex, educational level and smoking (aOR=2.2, CI=1.1-4.3). Demonstration of a dose-response relationship failed when exposure was calculated by quartiles. With exposure assessed from lowest to highest, the first two exposure quartiles were not significant while the 3rd was statistically significant (aOR=6.6, CI=1.7-25.0); however, the highest exposure quartile had aOR=0.7 (CI= 0.1 – 3.1) and was not significant.

Baldereschi et al. (2003) investigated the association of major lifestyle-related risk factors with the prevalent cases of PD identified by the Italian Longitudinal Study on Aging. 5632 individuals were randomly selected from the population of eight centers and screened for parkinsonism using both a questionnaire and a neurological examination; 113 prevalent PD cases were identified. PD was defined among those affected by parkinsonism by exclusion of all other possible causes. Age, male sex, and having a pesticide-use license were significantly related to PD. Heavy smoking was inversely related with PD. Age (OR=1.1, CI= 1.06-1.15) and having a pesticide-use license (aOR=3.68, CI= 1.57-8.64)
retained their significant correlation with PD in the multivariate analysis after adjustment for all the variables under investigation (i.e., age, sex, years of schooling, smoking status (never, 0.01–19.99 pack years, >=20 pack years), and having a pesticide-use license). In multivariate analyses for men and women separately, having a pesticide use license was positively associated with PD only in men (aOR=4.41, CI=1.84-10.56 for men). In this study, farming for at least 10 years was not associated with the risk for PD (aOR=1.2, CI=0.72-1.97).

Gorell et al. (2003) sought to determine the relative contribution of potential PD risk factors to the development of PD. Subjects from a health system in tri-county Detroit metropolitan area were recruited. Lifetime cumulative exposure was calculated for each pesticide group. Variables included occupational exposure to selected metals, family history of PD, occupational exposure to pesticides, occupational exposure to farming, and smoking. Cases (n=144) and 464 controls, selected between 1988 to 1992, were matched on sex, race, and age. An interviewer-administered risk factor questionnaire provided a history of all jobs held for 6 months or longer. An industrial hygienist reviewed each job history and assessed the possibility of exposure to different metals. Long-term (>20 years) exposure to manganese had the highest adjusted odds ratio (aOR=10.6, CI=1.1-106.0, p=0.044), while occupational exposure to herbicides aOR=4.1 (CI=1.37-12.23) and occupational exposure to insecticides aOR=3.55 (CI= 1.75-7.18, p=0.001) were also associated with PD. For farming in general as an occupation aOR=2.79, (CI=1.03-7.54, p=0.043).The final multivariate model after stepwise logistic regression had a population attributable risk (PAR) of 54.1% and included the following variables: smoking less than or equal to 30 pack years, PD in first- and second-degree relatives, occupational insecticide exposures, occupational lead and copper exposure (both >20 years). These results suggest that PD is a multi-factorial condition, with various environmental and genetic risk factors playing a role in its development.

Yesavage et al. (2004) assessed whether pharmacy database information from the US Department of Veterans Affair (VA) medical centers could be used to screen for areas of higher PD prevalence among patients exposed to pesticides. Pharmacy datasets (1997-2001) were used to compare the use of anti-parkinsonian medications and two VA medical centers in California (in Palo Alto near the ocean and in Fresno downwind from extensively farmed parts of the Central Valley). These areas were seen as a proxy for pesticide exposure (low=Palo Alto, higher=Fresno). Patients at Fresno exhibited higher ORs for the use of PD medications (carbidopa/levodopa prescriptions) than patients at Palo Alto; OR (Fresno/Palo Alto) from 1.5 (CI=1.1-1.9) in 1997 to 1.8 (CI=1.5-2.2) in 2000.
Park et al. (2005) utilized death certificate data from 22 states from 1982 to 1998 through the National Occupational Mortality Surveillance System to develop a case-control study. Cases were defined as having one of several neurodegenerative diseases, including PD. Controls were all decedents with no mention of neurologic disease, degenerative or otherwise and excluding certain exposures (e.g., solvents). Priority occupations associated with neurodegenerative disease (n=87) were identified from a previous study with statistically significant elevated proportionate mortality ratios (PMRs). Of 2,614,346 deaths identified from 1992 to 1998 among participating states, 33,678 were due to PD. The following occupational groups had a significant association with PD: biological scientists [mortality odds ratio (MOR)=2.04, CI= 1.39-2.92]; post-secondary teachers (MOR=1.61, CI=1.39-1.85); teachers (primary/secondary) (MOR= 1.30, CI= 1.18-1.43); clergy (MOR= 1.79, CI= 1.58-2.02); other religious workers (MOR= 1.70, CI= 1.27-2.21). PD risk was significantly elevated across all three farming specifications in all age groups, but the strongest association was for non-horticultural farmers (MOR=1.16, CI=1.11-1.22), with much higher risk below age 65 (MOR=2.23, CI=1.47-3.26). Of all of the occupations, there was the strongest significant relationship with PD among farmers under age 65. This was either due to early onset of PD attributable to farming exposures or the excess cases that might not be discernible above the greatly increased background cases at older ages. MORs were adjusted for age, race, sex, region, and SES. In other occupations where pesticide usage might be expected (e.g., farm workers, horticultural specialty workers), significant elevations were not observed although horticultural specialty workers did show a non-significant excess of PD (MOR=1.65, CI=0.92–2.71). This analysis based on death certificate data was limited by lack of work history and potential misclassification of cause of death. Thus, in many respects, morbidity data are preferred to analyze the association between PD and many exposures.

Galanaud et al. (2006) conducted a case-control study where 292 cases were chosen from those enrolled in a French insurance system for agricultural workers who submitted an application for PD health care coverage among ages 18-75. Controls were chosen from the same insurance group, but without signs of PD and matched with cases by age and geography. Exposure was assessed by interview with a questionnaire. Data were gathered on smoking status, pesticide exposure, and alcohol consumption. There was a decreased risk of PD with smoking, (OR=0.6, CI=0.4—0.9). PD risk among those who had never smoked but did have professional pesticide use was 2.0 (CI=1.1—3.6); the risk was not statistically significant for those who ever smoked (OR= 0.9, CI=0.5–1.8).

Wastesson et al. (2006) analyzed cases of PD in a group of paper mill workers in Sweden exposed to the fungicide diphenyl. Subjects were identified from company files and trade union cards
where job titles and time of employment were noted. Initially, 506 exposed workers who had worked in production of diphenyl-impregnated paper anytime from 1954 to 1970 were identified. However, only 284 were still living in Sweden in August 2002. The resulting cohort of workers still alive and under the age of 80 years (255 workers) included only those with job titles or other designations indicating that they had worked in the large hall where the production of diphenyl-impregnated paper took place. Given that the number of expected prevalent cases in the exposed group was estimated to be 0.9 (versus the five cases found), this resulted in a relative risk of 5.6 (CI=1.8-13, p=0.002). The authors also looked at PD risk among the deceased workers (n=222). Nine cases of PD were found in the exposed group compared to the 4.3 cases of PD expected from data on the lifetime risk of developing PD in the general population (RR=2.1, CI=0.96-4.0).

Frigerio et al. (2006) recruited 149 PD cases (90 men) and 129 controls from the Rochester Epidemiology Project from 1975 through 1996. Each case was individually matched by age (±1 year) and sex to a general population control who resided in Olmsted County, MN, and who was free of PD, other parkinsonism, or tremor of any type in the index year (year of onset of PD in the matched case). All subjects who farmed for five or more years were asked additional detailed questions about the main type of crops, the use of pesticides (including herbicides, insecticides, and other pesticides), and the names of the specific products used. In this study, the use of pesticides by male farmers was more common in cases than in controls; however, because of limited power, the difference was not statistically significant. Exposure to pesticides related or unrelated to farming was associated with PD in men (OR=2.4, CI=1.1-5.4; p=0.04). This association remained statistically significant after adjustment for education divided in four quartiles (aOR=2.8, CI=1.2-6.5, p=0.02) or smoking ever vs. never (aOR=2.5, CI=1.1-5.7, p=0.03).

Ascherio et al. (2006) prospectively examined whether individuals exposed to pesticides are at higher risk for PD than those not exposed. The study population was comprised of participants from the Cancer Prevention Study II (CPS II) Nutrition Cohort, a longitudinal investigation of US men and women initiated in 1992 by the American Cancer Society. In 1982, as part of the original CPS II mortality study, participants completed a four-page survey that included questions on occupation and exposure to broad chemical categories, including pesticides/herbicides. If exposed, participants were asked to report the duration of exposure in years. Follow-up surveys were conducted in 1997, 1999, and 2001. The 143,325 individuals who returned the 2001 survey and did not have a diagnosis or symptoms of PD at baseline (1992) were included in the analyses. Individuals exposed to pesticides had a 70% higher incidence of PD
than those not exposed (aRR=1.7, CI=1.2-2.3; p=0.002). The relative risk for pesticide exposure was similar in farmers and non-farmers.

Kamel et al. (2006) used data obtained from licensed private pesticide applicators and spouses participating in the Agricultural Health Study to evaluate the relation of self-reported PD to pesticide exposure. Individuals applying for certification to use restricted-use pesticides in Iowa or North Carolina were enrolled in this cohort study. Cohort members, who were enrolled in 1993-1997, provided detailed information on lifetime pesticide use. At follow-up in 1999-2003, 68% of the cohort was interviewed. Cases were defined as participants who reported physician-diagnosed PD at enrollment (prevalent cases, n=83) or follow-up (incident cases, n=78). Cases were compared with cohort members who did not report PD (n=79,557 at enrollment and n=55,931 at follow-up). Incident PD was associated with cumulative days of pesticide use at enrollment (highest quartile vs. lowest, OR=2.3, CI=1.2-4.5; p-trend = 0.009). Although positive, there was not a statistically significant association with personally applying pesticides more than half the time (OR=1.9, CI=0.7-4.7). Associations between the risk for PD and exposure to specific pesticides are discussed in other relevant sections. Prevalent PD was not associated with overall pesticide use.

Dick et al. (2007a) conducted a case-control study of 959 prevalent cases of parkinsonism (767 with PD) and 1989 controls in Scotland, Italy, Sweden, Romania and Malta. Cases with drug-induced or vascular parkinsonism or dementia were excluded. Subjects completed an interviewer-administered questionnaire about lifetime occupational and hobby exposure to solvents, pesticides, iron, copper and manganese. Lifetime and average annual exposures were estimated blind to disease status using a job-exposure matrix modified by subjective exposure modeling. Multiple logistic regression analysis was conducted with adjustments for age, sex, country, tobacco use, ever knocked unconscious and family history of PD. Analyses showed a positive but non-significant association between PD and any exposure to pesticides (aOR=1.25, CI=0.97 to 1.61) and low pesticide exposure vs. no exposure (aOR=1.09, CI=0.77-1.55). However, there was a statistically significant positive association between PD and high pesticide exposure vs. no exposure (aOR=1.39, CI=1.02 - 1.89).

Hancock et al. (2008) observed that the frequency of pesticide exposure (>10 days per year), exposure duration (>25 years), and cumulative days of exposure (>215 days) were statistically significantly associated with a 2-fold increased risk for PD in a dose-response manner (p<0.013). The authors conducted a case-control study using 319 cases and 296 controls who were relatives of the cases. Subjects were recruited from the Morris K. Udall PD Research Center of Excellence at Duke University Medical Center. Cases were confirmed by an in-person examination. Pesticide exposure was
assessed using a telephone questionnaire. Questions included: "Have you ever applied pesticides to kill weeds, insects, or fungus at work, in your home, in your garden, or on your lawn?" Individuals provided only a "yes/no" answer for this question, so separation of residential applications from occupational applications for analysis was not possible. If the answer was "yes," individuals were asked to list the name of any pesticides they remembered using. For each pesticide, individuals were asked the number of days it was used per year, whether it was currently being used, the years application started and stopped (if applicable), and whether protective gear, such as a mask, rubber gloves, or rubber boots, was used during application. The study examined the associations of pesticide application, well-water consumption, and farming residences/occupations with PD while controlling for age at examination, sex, cigarette smoking and caffeine consumption. By recruiting controls that were relatives of the cases, the authors argue that there is less likelihood for spurious association due to unmeasured genetic and environmental factors compared to a population-based sample. Cases were significantly more likely to report pesticide application than their unaffected relatives (OR=1.61, CI=1.13-2.29). Frequency, duration, and cumulative exposure were also significantly associated with PD in a dose-response pattern (p<0.013). The association was modified by family history of PD, as only individuals with no family history of PD had an increased risk of PD associated with pesticide exposure (OR=1.8, CI=1.2-2.7). When examining associations of herbicide application with PD, there was no statistically significant positive association with PD for individuals who reported ever applying herbicides (OR=1.59, CI=1.00-2.54), as compared to individuals who never applied pesticides. However, there was significant positive association with PD for individuals who reported ever applying pesticides other than herbicides (OR=1.61, CI=1.09-2.38), as compared to individuals who never applied pesticides. When examining associations between insecticide application and PD, only individuals who reported ever applying insecticides were significantly more likely to develop PD (OR=1.83, CI=1.20-2.81). There was no statistically significant increased risk of PD among individuals who reported ever applying pesticides other than insecticides. In addition, specific insecticide classes (organochlorines and organophosphates) were found to be associated with PD and these are cited in the corresponding sections, below. Well-water consumption and living on a farm were not associated with PD. Because the association between pesticide exposure and PD only existed for those with a no family history of the disease, the authors recommended that pesticides should be considered as an effect modifier in future candidate gene studies.

Elbaz et al. (2009) conducted a case-control study of 224 cases on 557 controls. Cases were those with PD selected from the Mutualité Sociale Agricole (health insurance company for farmers
whether retired or active). Controls were from the same health insurance company but without PD. Pesticide exposure was evaluated in two phases including an expert evaluation. Analyses were performed by broad category (insecticide, herbicide, fungicide) and 29 pesticide families (this part of the analysis was restricted to men). The authors found an association between professional exposure to pesticides overall and PD (OR=1.8, CI=1.1-3.1) as well as a dose-response relationship between the length of exposure (p-trend=0.01 for ≤38 and >38 years of exposure vs. no exposure) and PD. Associations between pesticides and PD were generally stronger in men with older onset PD than younger onset PD. Thus, genetics seemed to play a larger role in younger cases, whereas environmental exposures played a larger role in older cases. Professional pesticide use was associated with PD in a population characterized by a high prevalence of exposure. For gardening with non-professional pesticide use, there was a positive but not statistically significant risk of PD (OR=1.4, CI=0.9-2.3 and p=0.18).

Hristina et al. (2010) conducted a case control study in Belgrade from 2001-2005 to examine the association between residential and occupational exposure to pesticides and PD development. There were a total of 110 PD cases with 220 hospital controls which were matched by age, sex, and geography. PD cases, significantly more frequently than controls, spent some time during their life in rural settings (p < 0.001). The authors examined a number of variables for potential association with PD including occupation, type of agricultural work, and type of nonagricultural work, exposure to any pesticides, insecticides, fungicides, well water drinking, and spring water drinking, and occupational exposure to chemicals and metals. The final logistic regression analysis, in which an adjustment was made for smoking, included gardening (ever), exposure to insecticides (residential plus occupational), occupational exposure to dyes, occupational exposure to naphtha and its derivatives, well water drinking (ever), spring water drinking (ever) and service sector worker. All of these variables had a positive and statistically significant association with PD, with the exception of service worker. For exposure to insecticides through occupation and residence the aOR=3.22 (CI=1.32–7.87). The most frequently used insecticide was imidacloprid, followed by malathion, cipermetrin, and dimetoat. However, the relationship to individual insecticides was not examined nor was the quantity of exposure. For gardening at any time during life the OR was 5.51 (CI=3.04–10.01). Of note is that PD was not associated with agricultural occupation (p=0.424) and thus was not included in the final model. It was postulated that well water could serve as a vehicle for various chemicals’ exposure, which can initiate the development of PD.
Sanyal et al. (2010) investigated the possible impact of environmental risk factors on idiopathic PD development in a case-control study performed in Eastern India between January 1st, 2006 and December 10th, 2009. PD patients (140 men, 35 women) and 350 non-PD age-sex matched controls were included in the study. Subjects were given a structured neurological examination and administered a questionnaire, which elicited detailed information on demographic data, pesticides, herbicides, family history, occupation, dietary and smoking habits. The multivariate analysis revealed that pesticide exposure was positively associated with PD development (OR=17.12, CI=4.97-58.84). Other factors associated positively with the risk of PD were family history of PD in first and second degree relative (OR=21.4, CI=6.36-70.12), exposure to chemicals other than pesticides and herbicides (OR=7.54, CI=2.72-20.89), rural living (OR=4.05, CI=2.53-6.49), and previous history of depression (OR=1.98, CI=1.18-3.29), whereas, smoking appeared to be a protective factor (OR=0.45, CI=0.26-0.79). Well water drinking for at least five years, though a significant risk factor on univariate analysis (OR=4.5, CI=2.1-9.9), could not be proved significant in multivariate analysis. Head trauma, vegetarian dietary habit, occupation involving physical exertion and exposure to domestic pets were not as significant risk factors for PD.

Moisan et al. (2011) conducted a cross-sectional study to examine the relationship between PD prevalence and farming type as a proxy for pesticide exposure. Examples of farming type included cattle ranching, general field cropping, and mixed cropping, with pesticide exposure varying greatly by farming type. Cases were identified using data from a French organization that reimburses current farmers and retired farmers for health insurance. PD prevalence was then estimated in five French districts. The authors split the exposures (farming type) into 5 quintiles, by density. For example, an area with the lowest density of cattle farms would be placed in the 1st quintile for that exposure category, whereas an area with the highest density of cattle farms would be placed in the 5th quintile. After adjustment for age, sex, district, and income, the risk of PD increased with the density of farms specialized in fruits and permanent crops (FSFPC) (OR of 5th vs. 1st quintile = 1.21, CI = 1.02-1.43, p-trend=0.008). The association between PD prevalence and FSFPC was similar across all districts. The authors noted that 1) there was a high use of insecticides and herbicides in FSFPC and thus FSFPC pesticide applicators were potentially more exposed to pesticides than persons applying pesticides to other crops and 2) while cases were not confirmed by a neurologist, it was unlikely that diagnostic misclassification depended on farming type. Additionally, through a validation study, the authors noted that the sensitivity/specificity of the case definition did not depend on FSFPC density (p= 0.980).
Van der Mark et al. (2012) conducted a meta-analysis of 46 studies on PD and pesticide exposure, including 39 case-control, 4 cohort, and 3 cross-sectional studies. Exposure to pesticides was classified as ever vs. never exposed and by exposure assignment based on job title. The authors reported a statistically significant association between pesticide exposure and PD risk (summary risk ratio or sRR)=1.62, CI=1.40-1.88) and between PD and job title–based exposure assignment (sRR=2.5, CI= 1.5-4.1). Self-reported pesticide exposure was also associated with PD development (sRR=1.5, CI=1.3- 1.8). The authors indicate that conclusions are limited by subjective exposure assessment and recommended that future studies focus on more objective methods of pesticide exposure assessment.

Van Maele-Fabry et al. (2012) conducted a meta-analysis of 12 cohort studies of workers occupationally exposed to pesticides with an outcome that included parkinsonian disorders or associated diseases (Parkinson’s disease, parkinsonism). Only those results for PD are reported here. The method of exposure assessment varied among the 12 studies and five of the studies only included men. The small number of studies prevented conclusions about specific chemical class of pesticides likely to be related to PD. Studies restricted to banana, sugarcane and pineapple plantations showed an increased mRR of 2.05 (CI=1.23 – 3.42) for PD, as did studies where the PD diagnosis was confirmed by a neurologist mRR 2.56 (CI=1.46 – 4.48). This meta-analysis provided some support for the hypothesis that pesticide exposure increases the risk of PD.

Noyce et al. (2012) reported a statistically significant positive association between exposure to pesticides (or herbicides or insecticides) and PD using a systematic review and meta-analysis of the risk factors for PD. For 36 case-control studies combined, there was a positive association between pesticide exposure and the later diagnosis of PD (OR=1.77, CI=1.48 – 2.12); for two combined cohort studies, the relative risk (RR) was 1.78 (CI=1.30-2.42), and for all studies combined, the RR was 1.78 (CI=1.50-2.10). After the authors conducted the Egger test, which suggested evidence of publication bias (p<0.001), the trim and fill method was used to account for this bias. This resulted in diminished summary estimates for pesticide exposure (RR declined from 1.78 to 1.53; CI= 1.29-1.80).

Savica and co-authors (2013) investigated specifically how PD risk factors, including pesticide use, affected the development of PD in men and women separately. This study of 196 case-control pairs (392 individuals) revealed that in men but not in women, lack of coffee consumption (never vs. ever), history of head trauma, and pesticide use were independent but relatively rare risk factors for PD and subjects who had at least one of these three risk factors (composite exposure variable) had over five-times greater risk of PD development (OR=5.28, CI=2.67-10.43). However, the magnitude of the effect due to exposure to pesticides alone or specific type of pesticides used were not provided.
Pezzoli and Cereda (2013), who investigated the risk of PD associated with exposure to
pesticides and solvents using meta-analyses of data from cohort and case-control studies, found a
marginal and non-statistically significant association (RR=1.26, p=0.075) between exposure to pesticides
and PD development, for five pooled cohort studies. For three cohort studies investigating the role of
employment in agricultural jobs, the pooled estimate for risk of PD was RR=1.33 (p<0.001). In primary
analyses including all case-control studies, the authors also found that PD was associated with exposure
to any type of pesticides, herbicides, and insecticides. For pesticides, the OR was 1.76 (CI=1.56—2.04);
for herbicides, the OR was 1.33 (CI=1.08-1.65); for insecticides, the OR was 1.53 (CI=1.12-2.08).
However, no association was observed with fungicides, rodenticides, organochlorines, and
organophosphates. The authors concluded that the literature supports the hypothesis that exposure to
pesticides is a risk factor for PD.

One review article (Kieburtz and Wunderle, 2013) evaluated the level of evidence for the
association between pesticide exposure and the development of PD among 4 studies by choosing one of
two categories: 1) sufficient evidence of an association 2) limited suggestive evidence. For the sufficient
evidence category, the articles needed to demonstrate a consistent positive relationship and that bias or
chance can be ruled out with reasonable confidence. For the limited suggestive evidence category, the
studies suggested a positive relationship, but bias or chance could not be ruled out with confidence.
The authors concluded that for these 4 studies, there is limited suggestive evidence of an association
between pesticide exposure and PD.

Lack of association
The studies which could find no association between general pesticide exposure and risk of PD are
summarized here. In some cases, however, the studies were mixed with both positive and no
associations.

Ho et al. (1989); surveyed eight old age homes in two areas of Hong Kong to find PD cases and
controls. Initial pool was 561 subjects. Of these, 35 cases were identified through examination by
trained doctor and independently checked by 2 other examiners. Controls (n=105) matched by age and
sex were those that were free of PD and dementia. A person-to-person interview with a structured
questionnaire was used to collect information on social characteristics, medical history, health practices,
and environmental factors such as rural living, farming practices, exposure to pesticides and
consumption of raw vegetables. Informants were used for those PD patients with dementia. Other
variables identified included smoking, drinking alcohol, and tea drinking. Risk of PD among those living in
rural areas over 40 years was 4.9 (CI=1.4-18.2). The risk was not statistically significant for 21-40 years

of residency (OR=2.1). Risk of PD among those farming over 20 years was OR=5.2 (CI=1.6-17.7). There was a positive but not statistically significant association between previous use of pesticides and herbicides and PD development (OR= 3.6, CI=1.0-12.9). Consumption of raw vegetables increased the risk for PD (OR=10.8, CI=2.4-40.0). There was a protective effect of drinking black or other tea seen, but this effect was not statistically significant. Smoking was also protective effect of (OR=0.6, CI=0.2-1.3), but it was not statistically significant. Patients with PD showed a much higher frequency of eating raw vegetables. A case control study carried out by Koller et al. (1990) included 150 PD cases, which were randomly selected from the Movement Disorder Clinic at the University of Kansas Medical Center. PD was confirmed by the presence of two or more cardinal signs of the disease and responsiveness to levodopa therapy. Controls (n=150) matched by age and sex were randomly recruited from the same clinic as the cases. All control subjects were examined and those with any parkinsonian signs were excluded. Exposure information was collected through a questionnaire administered by a trained interviewer. Exposure data collected included rural versus urban living, number of years spent farming, number of years drinking well water, and exposure to herbicides or pesticides. There was a statistically significant difference in the number of years that PD patients spent living in a rural environments compared to controls (OR=1.9, p=0.01). There was also an association between well water use and PD (OR=1.7, p=0.03), though that was dependent on rural living. There was no association between PD and pesticide use (OR=1.1, p=0.8).

A pilot case-control study by Wechler et al (1991) involved subjects (cases and controls) recruited from a neurology clinic in Seattle, (some cases were recruited from area Parkinson’s support groups). The study included 34 cases of PD (no discussion of how PD was classified or verified) and 25 controls (average age 68.4 and 58.9 years, respectively). Exposure to various environmental factors and occupations was assessed through a self-administered questionnaire mailed to participants. The return rate of the questionnaires was 49% (59 of 121 distributed). A non-significant but elevated odds ratio was reported for males working in farming occupations (OR =3.1, CI=0.3-35.2). Analysis of occupational exposure to pesticides was limited to males, because too few females worked in the occupations of interest. However, analysis of pesticide exposure at home included both males and females. More home-use of 3 pesticides (Kleenup grass & weed killer, Orthotrix, and Pestkill) was observed among PD cases than controls, but the trend was not significant for any of those pesticides. No measures of association were reported for pesticide use. Although no clear trends were observed for pesticide exposure, the authors recommended that future studies should examine the association between PD and exposure to specific pesticides.
Another case-control study was carried out with 161 cases and 149 matched controls (Stern et al., 1991). There were 2 groups of cases: young onset (<40 year olds; 46%) and old onset (>60 year olds; 53.7%). There were 60.4% males and 39.6% females; 98.0% Whites and 4.0% Blacks. The risk factors evaluated for their association with PD development included well water drinking, rural living, insecticide and herbicide exposure, head injury, smoking, education. Exposure was assessed by using a structured questionnaire. There was no statistically significant association between PD and exposure to insecticides (OR=0.5, CI=0.2-1.1) and herbicides (OR=0.9, CI=0.6-1.5). There was a non-statistically significant difference in the risk for PD between young/old onset groups given insecticide or herbicide exposure. Self-reporting of exposures in structured questionnaires may have introduced recall bias.

A case-control study of 19 families having two or more siblings with PD was conducted in Kansas to investigate possible risk factors for PD (Wong et al., 1991). Nineteen sibling pairs examined by a neurologist for PD were analyzed. PD was defined as the presence of at least two of the cardinal signs of parkinsonism (i.e., tremor, bradykinesia, rigidity, and postural instability). Patients with atypical features and dementia were excluded. Two control groups were selected for comparison; 38 individuals who were age- and sex-matched to the PD patients were randomly selected from the general neurology and medicine clinics. Demographic data included lifetime histories of places of residence; sources of drinking water; occupations, such as farming; and exposure to herbicides and pesticides. A comparison of parkinsonian siblings with siblings with essential tremor revealed no differences in any risk factors for the years of shared environment. Rural living and drinking well water (p=0.07), but not farming and herbicide/pesticide exposure (for herbicide/pesticide use OR=1.0, p=1.00), were significantly increased in 38 parkinsonians compared with 38 normal control subjects.

Smargiassi et al. (1998) carried out a questionnaire-based case-control study to investigate the possible association between exposure to environmental factors, including occupational exposure to pesticides and herbicides and PD development. Cases included 86 patients with neurologist-confirmed idiopathic PD and 86 controls similar in sex and age in Northern Italy, recruited in outpatient specialist centers of the same University Hospital (glaucoma, psoriasis vulgaris, essential arterial hypertension and renal diseases). Exposure was defined as occupational or residential contact with a given factor for at least 10 consecutive years prior to the onset of PD. Subjects who never smoked were excluded. In this study, occupational exposure to pesticides and herbicides was not associated with the development of PD (OR=1.15, CI=0.56-2.36). However, the following risk factors were identified for PD: well water use (OR= 2.78, CI= 1.46-5.28) and occupational exposure to industrial chemicals (OR= 2.13, CI= 1.16-3.91), which included pesticides and herbicides. Among industrial chemicals, only organic solvents were
identified as significant risk factors for PD (OR= 2.78, CI= 1.23-6.26). Smoking habit was negatively associated with PD (OR= 0.41, CI= 0.22-0.75), confirming the "protective" role of tobacco smoking suggested by many studies.

Werneck and Alvarenga (1999) conducted a case-control study in the city of Rio de Janeiro, Brazil to investigate the relationship between exposure to potential risk factors (herbicides and pesticides [unspecified], occupational exposure to chemicals, ingestion of drugs with secondary PD effects, rural life, water well source, family history, cranial trauma, and cigarette smoking) and development of PD. 92 subjects (41 men & 51 women, average age 70.55 yrs) diagnosed with PD between Jan 30, 1996-Feb 1, 1997 were randomly selected at the Neurology Dept of IASERJ Central Hospital; 110 controls (47 men & 63 women, average age 68.38 yrs) selected in the same hospital and matched with by sex and age (+/- 2 yrs); all controls underwent examination to exclude those showing any signs of parkinsonism or dementia; a questionnaire was used to investigate potential risk factors. Contact with herbicides and insecticides ("Have you regularly inhaled or handled herbicides and insecticides? For how long?") for a minimum period of 15 years was required for enrollment in the study. No significant association was found between PD and general herbicide/pesticide exposure (OR=2.49, CI=0.53-13.14). Six cases (6.36%) and 3 controls (2.72%) had contact with herbicides and pesticides; four individuals used them during rural residency (all had PD) and two PD cases were positively associated with family history (OR=14.5, CI=2.98-91.38), the use of drugs with secondary PD action (OR=11.01, CI=3.41-39.41), and with exposure to chemical agents (OR=5.87, CI=1.48-27.23). PD was inversely associated with cigarette smoking (OR=0.39, CI=0.16-0.95). Univariate analysis showed cigarette smoking to be a protective factor for PD development.

Kuopio et al. (1999) studied the environmental risk factors of PD in Finland, particularly the factors related to rural environment, in a study in 1992. The population of 196,864 people, including urban and rural areas comprised this community-based case-control study. The case subjects (n= 123; 63 males and 60 females; 96 urban and 27 rural) were matched with control subjects (n=246; 126 males and 120 females; 192 urban and 54 rural). Analyses were carried out by conditional logistic regression model. The use of DDT had been the same in both groups (OR=1.04, CI=0.68-1.60, p=0.855). The use of pesticides (regular use OR=0.65, CI=0.33-1.29, p=0.221; occasional use OR=1.23, CI=0.74-2.04, p=0.431; for both OR=1.02, CI=0.63-1.65, p=0.935), herbicides (regular use OR=0.79, CI=0.38-1.66, p=0.539; occasional use OR=1.71, CI=0.90-3.23, p=0.101; and for both OR=1.40, CI=0.79-2.48, p=0.245), or mercury-containing pickling solutions (regular use OR=1.37, CI=0.53-3.53, p=0.58; occasional use OR=1.47, CI=0.58-3.70, p=420; for both OR=1.58, CI=0.74-3.42, p=0.240), considering regular and
occasional use separately and both regular and occasional use together, was not associated with increased risk of PD. Only three case subjects and five control subjects recalled the use of paraquat-containing products.

Tuschen et al. (2000) conducted a prospective, hospital-based cohort study to examine the possible association between agricultural and horticultural work and the subsequent morbidity from PD. Fixed cohorts of 2,273,872 men and women aged 20-59 years on 1 January 1981 and identified in the Central Population Register of Denmark were followed. All first-time hospitalizations with PD as the principal diagnosis during the 13 years until 31 December 1993 were recorded. Standardized hospitalization ratios (SHR) were calculated using all gainfully employed persons as the standard and by multiplying the ratio by 100. Statistically significantly high risks for PD were found for farmers (79 cases, SHR=130, CI=103-163) and for all men in agriculture and horticulture (109 cases, SHR=134, CI=109-162). A consistent, but non-significant pattern of high risks for PD was found among other occupational groups known to be potentially exposed to pesticides (e.g., agriculture or horticulture workers); however, no data on exposure to pesticides per se were collected nor evaluated.

Herishanu et al. (2001) PD cases (n=93) and age-and sex-matched controls (n=93)) recruited in medical facilities in S. Israel were administered a validated exposure questionnaire. A multivariate logistic regression was applied for data analysis. Ninety-three consecutive unselected urban patients diagnosed between 1989-1995 as suffering from PD and treated at the outpatient PD clinic of Soroka University Medical Center in Beer-Sheva (the only general hospital in the entire region serving approximately 600,000 inhabitants) were compared to 93 age- (± two years) and sex-matched controls. The latter were recruited from the outpatient dermatology, neurology and internal medicine clinics of this hospital. Inclusion criteria for PD were progressive disorder and presence of at least two of the cardinal signs of tremor, rigidity, bradykinesia, postural instability, and good response to L-dopa. Additional criteria were absence of significant cognitive impairment and lack of an alternative etiology known to cause secondary parkinsonism. Controls presenting extrapyramidal signs, or evidence of other neurodegenerative diseases, such as Alzheimer’s disease or essential tremor, were excluded from this study. All subjects (patients and controls) resided in Beer-Sheva or in other towns of the Negev. The risk of PD due to pesticide exposure was increased but not statistically significant (OR=6.81, CI=0.75-6.44, p <0.1). Multivariate logistic regression analysis showed history of work in construction was the strongest predictor of PD risk, followed by exposure to pesticides. Smoking was found to be a strong protective factor for PD development.
Petrovich et al. (2002) conducted a prospective cohort study with 30 years of follow-up on the island of Oahu, HI. Male subjects of Japanese ancestry (n=8006) were enrolled in the Honolulu Heart program which began in 1965. Diagnosis of PD was identified through hospitalization records, death certificates, and review of medical records for all patients with PD from a local neurologist’s office. After 1991, the diagnosis of PD was based on a complete reexamination of the entire cohort. Exposure was assessed by occupational exposure histories including questions on type of plantation work and length of time working on plantations. Information on confounding variables including age, smoking pack years, and coffee consumption was also collected. Workers who had over 20 years of work on a plantation were 1.9 times (CI=1.0-3.5) more likely to have PD compared to men with no plantation work. However, self-reported pesticide exposure was not significantly associated with PD. Study data implicate occupational pesticide exposure as a likely factor in PD in those study subjects who had worked on plantations for more than a decade.

Abbott et al. (2003) examined data from a 1965 cohort of 8,006 Japanese-American men who were interviewed about environmental, life-style, and physical attributes at selected examinations to study the relationship between these factors and the incidence of PD. All subjects were PD-free at the start of follow-up for clinical PD. Independent effects of each factor on the risk of PD were examined through the use of proportional hazards regression models. Results were not statistically significant (p=0.101) for exposure to pesticides and risk of PD (no ORs were reported). Among non-drinkers of coffee, risk of PD was 3-times higher in men who were exposed to pesticides for more than 3 years (63.4/10,000 person-years) as compared to men with no exposure to pesticides (21.4/10,000 person-years, p=0.044). Risk of PD in nonsmokers also seemed to increase susceptibility to pesticides for exposures beyond 3 years versus men who were not exposed (27.4 versus 11.8/10,000 person-years, p=0.053). The authors reported that their results indicated cigarette smoking and coffee drinking reduced the susceptibility to PD associated with exposure to pesticides.

Exposure to pesticides was not associated with increased risk for PD in a retrospective case-control study conducted by Nuti and co-authors (2004) in Tuscany, Italy. Other environmental factors studied for their potential association with PD development were residency in rural areas and well-water drinking. PD patients (n=190; 106 males and 84 females) were identified as cases for the study. A population of 190 controls (106 males and 84 females) was recruited. There was no significant difference in mean age and sex between cases and controls. However, controls were more likely to be cigarette smokers. The results of this study did not show any statistically significant difference between PD patients and controls for time spent in rural or industrial residence, in well water drinking or in the
exposure to herbicides and pesticides. The ORs for exposure to pesticides and the risk for PD were as follows: OR=0.82 for 1-10 years of exposure duration, OR=1.00 for 11-20 years of exposure duration, OR=0.90 for 21-30 years of exposure, and OR=1.2 for ≥30 years of exposure. Although the findings of this study did not show any statistically significant association between the risk for PD development and residency in rural area, well-water drinking, and exposure to pesticides these findings indicated a protective effect of cigarette smoking on PD development.

Firestone et al. (2005) confirmed PD cases (n=250) and 388 age-, sex-, clinic location-, and enrollment period-matched controls were administered a structured interview to assessed exposure to pesticides. PD case patients were identified between 1992 and 2002 at the Group Health Cooperative (GHC) in western Washington State or the University of Washington. To ensure complete ascertainment, subjects were identified using a combination of provider referrals and computerized databases containing diagnostic coding and pharmacy information. Pesticides were grouped into organophosphates, any pesticide, and not exposed and exposure was categorized into low/med/high for analyses. Only lifelong well-water consumption had a statistically significant association with the risk of PD (OR=1.81, CI=1.02-3.21). Odds ratios for occupational exposure were not significant but suggested a gradient that paralleled an expected increase in pesticide exposure by occupation (pesticide worker: OR=2.07, CI=0.67-6.38; crop farmer: OR=1.65, CI=0.84-3.27; animal and crop farmer: OR=1.10; CI=0.60-2.00; and dairy farmer: OR=0.88, CI=0.46-1.70). The authors found no evidence of risk from home-based pesticide exposure. For example, any pesticide exposure resulted in an OR of 0.95 (CI=0.66-1.37). Risk for herbicides was elevated but not statistically significant (OR=1.09, CI=0.77-1.53).

Brown and co-authors (2006) conducted a literature review of epidemiological studies with pesticide exposure as one of the risk factors for PD development. Of the 38 case-control studies reviewed, all but 10 were already reviewed as original articles in this report. The 9 studies not included, reporting either positive or no association between risk of PD and exposure to pesticides, are summarized here. Fungicide exposure was not found to be a significant risk factor for PD, nor was exposure to rodenticides (Behari et al. 2001). Falope et al., (1992) reported an OR of 1.0 (CI=0.33-3.06) for the risk of PD and exposure to pesticides. Chaturvedi et al. (1995) examined pesticide exposure and fertilizer exposure and reported an OR of 1.81 (CI=0.92-3.36). Taylor et al. (1999) found that pesticide exposure was not a significant risk factor for PD after adjustment for confounding variables (OR=1.02, CI=0.9-1.2). The relationship between exposure duration and PD risk was investigated by Nelson et al., 2000 and a positive association was observed with high doses of pesticides compared with low doses. There was also a positive correlation with duration of exposure to, and high doses of, herbicides and
insecticides. Preux et al. (2000) found an OR of 1.34 (CI=0.85-2.1) and exposure to pesticides assessed through question “Have you ever been exposed to pesticides?” Vidal et al., 2002 had an OR of 1.7 (CI=1.1-2.8). Duzcan et al. (2003) asked “Have you been exposed to pesticides for more than 20 days during a year for at least 10 years?” and the OR was 1.96 (CI=1.31-6.69) indicating a statistically significant association with PD. Kamel et al. (2001) did not find a significant association with paraquat exposure, although risk was elevated: OR= 1.5 (CI=0.7-3.0); for maneb, OR=1.6 (CI=0.7-4.1).

A case-control study examining the association between exposure to pesticides, well water use, and rural exposures and the risk for PD was carried out by Wright and Keller-Byrne (2005). Residents of eastern Missouri and southwestern Illinois were enrolled in the study in 1995. Cases (n=102) were recruited from PD support groups and matched with 133 controls. A self-administered questionnaire was used to assess exposure history. Occupational pesticide use was not associated with PD (aOR=1.2, CI=0.3-4.8) after adjustment for smoking, rural living, familial PD, and other variables. However, exposure to 30 or more years of well water was associated with an increased risk of PD (aOR=8.7, CI=1.5-52). An elevated risk of PD was detected for any well water exposure during the first 40 years compared to no well water exposure (OR=7.3; CI=2.3-22.6) and for any exposure during childhood (first 20 years of life) compared to less than 20 years of exposure during childhood (aOR=8.3; CI=2.5-27.6). Among primary well water users in the first 20 years, the risk of PD was 11 times greater compared to subjects with no childhood exposure to well water (aOR=11.1, CI=2.1-51.8). There was also an exposure-response relationship for well water use; for each five-year increase of exposure before the age of 20, the risk of disease increased by 90% (OR=1.9, CI=1.3-2.8). Multivariate regression analyses adjusted for marital status, smoking, rural living, farm living, familial PD, familial essential tremor, head trauma, orchard employment, residential and occupational pesticide use.

Hofmann et al. (2006) investigated mortality among a cohort of workers from a Costa Rican banana plantation. The cohort included 40,959 individuals who worked on the plantation between 1972 and 1979. Their employment records were linked with the Costa Rican Mortality Registry to determine PD diagnosis as the cause of death through 1999. Although exposure to the nematocide, 1,2-dibromo-3-chloropropane (DBCP) was the primary interest for this study, the study could not distinguish between exposure to DBCP and exposure to other agricultural chemicals, including pesticides such as organophosphates, paraquat, and other pesticides. There were a total of 6 reported PD deaths during the follow-up period. Compared to the local population, male banana plantation had an elevated, but non-significant increased risk of mortality from PD (SMR= 2.39, CI=0.88-5.20) that was based on small numbers (n=6). Relative to national mortality, the SMR for PD was lower for the banana plantation.
workers, but above the null value (SMR=1.11, CI=0.41-2.41). No deaths from PD were reported for female workers. The lack of precise exposure information and the likely misclassification of cause of death in the Mortality Registry were the major limitations of this retrospective mortality study.

Cho et al. (2008) conducted a case-control study with participants recruited from Seoul National University Hospital which was comprised of 235 PD patients, 133 multiple system atrophy (MSA) patients, and 77 normal control subjects, according to the criteria of the United Kingdom Parkinson’s Disease Society (UKPDS) brain bank, but without the criterion of a positive family history. Environmental factor data were collected by face-to-face interviews using a structured questionnaire and included detailed information on duration of participation in farming, farming type, tap-water and well-water drinking, number and severity of pesticide intoxications, number and severity of carbon monoxide (CO) intoxications, and smoking history. Data on exposure to pesticides included the annual frequency of pesticide spraying and the duration of farming. The pesticides poisoning data included the number and severity of acute poisoning episodes. The combined variable of (farming years)*(annual frequency of pesticide spraying) resulted in an OR of 1.1 (CI= 1.0–1.2, p<0.086) for results greater than 30. The final logistic regression model demonstrated that smoking more than 10 pack-years was protective (OR=0.31). After adjusting for age, binary logistic regression analysis showed that drinking rural well water for more than 10 years significantly increased the risk of developing PD (by 2.4 for each 10-year period). The development of PD was not correlated with a history of direct pesticide exposure, but it was weakly correlated with a longer history of farming and more frequent use of pesticides. Farming greater than five years had an OR of 1.2 (CI=1.0-1.3, p=0.041). The spraying of pesticides more frequently than once per year had an OR of 1.1 (CI=1.0-1.2).

Peterson et al. (2008) investigated the association of dietary exposure to PCBs and methylmercury with PD in the Faroe Islands, where, the prevalence of PD is twice as high as would be expected, according to the authors. The OR for occupational exposure to pesticides (OR=6.00, CI=0.62-57.7) suggested an increased, but non-significant risk for PD, where pesticide exposure was classified as ever/never. However, only 2% of the population was exposed to pesticides. Hexachlorocyclohexane (β-HCH), which is an organochlorine pesticide, was also examined. This is addressed in the following section. Whale meat consumption in adulthood was also associated with PD. For those who ate whale meat at least twice per month, there was an increased risk compared to those who ate whale meat less than twice per month (OR=6.5, CI=3.02–14.1). Blubber consumption in adulthood (same frequency) also increased risk (OR=5.61, CI=2.5–12.8).
Firestone et al. (2010) conducted a case-control study of self-reported exposure histories among 404 PD cases and 526 controls, matched for age and sex. Newly diagnosed, idiopathic PD cases were identified between 1992 and 2006 at the Group Health Cooperative (GHC) and the University of Washington. A panel of neurologists confirmed PD diagnoses by medical chart review, requiring at least two of the four cardinal signs of PD (bradykinesia, resting tremor, cogwheel rigidity, and postural reflex impairment), one of which had to be bradykinesia or resting tremor. In women, the risk estimate was increased but not statistically significant for the general category of pesticides (aOR=3.9; CI=0.39-39.4), with adjustment for age, ethnicity, and smoking, though the number of exposed subjects was quite small. The risk estimate was also increased for women exposed to category of solvents (aOR=1.7, CI=0.98-3.04) and again it was not statistically significant. In men, none of the risk estimates were increased. For farming and related occupations, although none of the estimates was statistically significant, the trend paralleled an expected increase in pesticide exposure by occupation (i.e., a pesticide worker has a higher expected exposure than a crop farmer, who has a higher expected exposure than an animal farmer), and risk estimates were generally higher for women than men. The study also replicated the commonly observed inverse association between smoking and PD. The authors concluded that the risk of PD was not significantly affected by farming work, metal work, or exposure to pesticides, metals, or solvents. The authors also examined specific pesticides (malathion, parathion, diazinon, DDT, 2,4-D, and paraquat) which are addressed in subsequent sections.

Skeie et al. (2010) conducted a case-control study of 212 incident PD patients and 172 age- and gender-matched controls residing in four counties in Norway with a population of one million residents. Health outcomes studied were based on the Unified Parkinson Disease Rating Scale (UPDRS) and classified into tremor dominant (TD), postural instability and gait difficulties (PIGD), and intermediate (IND), based on symptoms. Several environmental risk factors were studied including occupation, smoking, alcohol, coffee consumption, and pesticide exposure. Pesticide exposure was self-reported and not quantified. Self-reported pesticide exposure, whether occupational or private use, was similar in patients and controls (18.0% vs. 17.1%, p=0.46). Agricultural work was associated with a higher risk of PD (OR=1.75, CI=1.03-3.0, p=0.009). There were no differences identified with other occupations. In the regression model which included intake of alcohol, coffee, and smoking, only coffee (p=0.007) and alcohol intake (p=0.021) remained significant whereas smoking was no longer significant. Thus, from this paper it seems as though only coffee intake reduces the risk of PD in general while associations to alcohol and smoking differ between PIGD and TD-PD patients.
Rugbjerg et al. (2011) conducted a case-control study focusing on recall bias in assessing pesticide exposure. A total of 403 cases were identified through a prescription plan database; patients were included as cases if they had at least one prescription for an anti-parkinsonian drug during the period of 1995-2002. All potential cases were confirmed by an initial screening phone interview about chronic diseases, anti-parkinsonian drugs taken, and the reason for their use. Those taking the drugs for known or suspected PD had an in-person physical assessment employing a checklist and record of symptoms, reviewed by a neurologist with a specialty in movement disorders. Controls (n=405), which were identified through stratified random sampling of the British Columbia (BC) Ministry of Health Services client registry (representing 97.5% of the population), were matched to cases by birth year, gender, and geographic region. Subjects were interviewed about job history, medical/personal habits history, and beliefs about the disease risk factors. Each participant’s job history was reviewed by an occupational (also called industrial) hygienist who was blind to case status to determine whether potential exposures of interest commonly associated with an occupation were reported. This occupational hygiene interview was conducted with those reporting pesticide exposures above background. The risk estimates for subcategories of pesticides tended to follow the same pattern: the highest risk estimates were for self-reports; the hygiene review resulted in reductions in risk estimates; and there were slightly higher risk estimates for exposures through pesticide spraying. For example, self-reported exposure to pesticides was associated with an OR of 1.76 (CI=1.15—2.70) among 40-69 year-old participants. When exposures were based on the hygiene interview, the risk decreased to a non-statistically significant OR of 1.51 (CI=0.85—2.69). None of the ORs for pesticide subcategories were statistically significant, except self-reported insecticide exposure (OR=1.80, CI=1.03-3.15). In a second model looking at the relationship between agricultural work and PD (36 cases and 17 controls), those reporting agricultural jobs had a statistically increased risk of PD (OR=2.47, CI=1.18–5.15) when adjusted for gender, birth year, and smoking. However, when hygiene-reviewed exposures were added, the elevated and statistically significant OR for agricultural work remained (OR=2.47, CI=1.18–5.15), but the risk due to pesticide exposure was no longer elevated (OR=0.83, CI=0.43–1.61). This study provides little support for pesticide exposure as a cause of PD. The relationship to agricultural jobs suggests that farming exposures other than those to pesticides, e.g., solvents, fuels, exhaust, dust, microorganisms, traumatic injuries, or endotoxins, should be considered as risk factors for PD.

Parron et al. (2011) conducted an ecological study using averaged prevalence rates of PD in selected Andalusian (South Spain) health districts categorized into areas of high and low environmental pesticide exposure. The pesticide exposure categories were based on the number of hectares devoted
to intensive agriculture and pesticide sales per capita. A total of 17,429 cases were collected from computerized hospital records (minimum dataset) between 1998 and 2005. In a bivariate analysis, a statistically significantly increased risk (prevalence rate ratio) was found for PD development (OR= 1.30, CI=1.22-1.39, p<0.001) when comparing prevalence rates of high pesticide exposure areas relative to low exposure areas. Males living in high pesticide use areas had a small but significantly increased risk for PD (OR=1.21, CI=1.11-1.32, p<0.001) as compared to males living in areas of low pesticide use. Similar to males, females showed statistically increased risk (OR=1.40, CI=1.28-1.52, p<0.001). A stepwise multiple logistic regression analysis of the PD development adjusted for exposure to pesticides, gender and age, showed no age differences between the populations residing in high relative to low exposure to pesticides (OR=1.06, CI=1.05-1.06, p<0.001); however, males had an increased risk for PD development (OR=1.18, CI=1.10-1.28, p<0.001) but the OR for exposure to pesticides was 0.94 (CI=0.87-1.010, p=0.096). Therefore, although living in areas with high pesticide use was a statistically significant risk factor for PD in bivariate analysis, this association could not be confirmed significant in multivariate analysis. The authors postulated that these contradictory results may in part be explained by 1) districts of low environmental exposure to pesticides having a greater use of herbicides but located in inland areas, where residents were more likely to drink well water from groundwater aquifer and 2) methodological differences among the studies.

Feldman at al. (2011) found no association between occupational pesticide exposure and PD development in a prospective cohort study of males from the Swedish Twin Study, which followed 14,169 Swedish men for up to 43 years. The authors assessed exposure to 14 chemical and biological compounds, including pesticides, through a job exposure matrix (JEM) based on occupation. The JEM assessed the probability of occupational exposure to chemical and biological compounds in four classes. Class 0 represented a very low probability of exposure (less than 1/10 of persons within the occupational family exposed) while class 3 represented a high probability of exposure (more than 2/3 exposed). Hazard ratios (HR) with 95% confidence intervals adjusted for age, smoking and education were used to estimate the relative risk of disease associated with exposure. For the risk of PD, the reported hazard ratios were 0.8 (CI=0.3-2.2) for class 1 probability of pesticide exposure vs. unexposed and 0.9 (CI=0.5-1.4) for the higher or class 2 probability of pesticide exposure. The authors concluded that there was no association between Parkinson’s disease or Parkinsonian disorders and occupational exposure to pesticides and other chemicals examined. There was, however, a significant association with inorganic dust exposure.
A positive but non-statistically significant association was found between the risk for PD and exposure to pesticides among gardeners Kenborg et al. (2012) in a cohort study in Denmark. 3124 male members of the Danish Union of Gardeners who were said to have been regularly exposed to a mixture of pesticides during their active working life were recruited for the study. Standardized hospitalization rate ratios (SHR) for PD were calculated as the ratio of two numbers: the numerator (“observed”), which was the actual number of hospital admissions over a specified time period, and the denominator (“expected”), which was the number of hospital admissions that would be expected if patients under the care of that facility experienced hospital admissions at the national rate for patients with similar characteristics. Twenty-eight gardeners were hospitalized with a primary diagnosis of PD, while 24.5 were expected for the general population. The subjects were followed from 1977-2008 for a primary diagnosis of PD and were compared to the general Danish population (using the national insurance database) and matched by age, gender, and calendar period specific rates. The estimated SHR was 1.14 (CI=0.76-1.65). Despite the non-statistically significant findings, the authors concluded that their study indicated a weak but dose-related association between exposure to pesticides and risk for PD and recommended the need for larger studies.

Steenland and co-authors (2013) recruited elderly patients (ages 65 and over) in facilities where free medical exams were provided. Patients were screened with a three-tier tool and evaluated for PD and Alzheimer’s disease. Linear and logistic regression analyses were applied. The authors reported an adjusted OR (aOR) of 2.57 (CI=0.91-7.26, p=0.07) for occupational exposure to pesticides with adjustments for age, sex and education.

Organochlorine
Organochlorine (OC) pesticides include DDT, aldrin, dieldrin, heptachlor, chlordane, and lindane, among others. Lindane is also known as gamma-hexachlorocyclohexane (HCH). Technical-grade HCH was used as an insecticide in the United States and typically contained 10-15% gamma-HCH as well as the alpha (α), beta (β), delta (δ), and epsilon (ε) forms of HCH. β-HCH is a by-product of the manufacturing process of the insecticide γ-HCH (lindane) and may be present in lindane; however, pure β-HCH is not used as a pesticide.

Of the 12 studies analyzing an association between OC pesticide exposure and PD development, 7 provided statistically significant evidence to support this association and 5 studies did not have

statistically significant evidence. Out of the 7 studies reporting increased risk of PD due to OC pesticide use, statistically significant ORs ranged from 1.4 to 5.8. Most of the statistically significant exposures studied were related to lindane, but one study also included dieldrin.

In one study, the consumption of traditional foods such as whale blubber increased the exposure to β-HCH, which is persistent in the marine environment. The half-life of this chemical is approximately 8 years. Risk factors for PD previously mentioned still apply (e.g. smoking reducing the risk of PD). Collectively, the studies support a multifactorial etiology of PD, influenced by family history of PD, head trauma, and pesticide exposure. The limitations of the studies included exposure misclassification, recall bias, small sample size, and competing risk factors that may not have been taken into consideration.

Positive association
The studies which, for the most part, found a positive and statistically significant association between OC pesticide exposure and risk of PD are summarized here. In some cases, however, the studies were mixed with both positive and no associations.

The previously described case-control study by Seidler and co-authors (1996) found that PD patients were more likely than control subject to have used OC pesticides; however, the adjusted OR was statistically significant only in comparison to the regional control (aOR=5.8, CI=1.1-30.4) but not for the neighborhood control (aOR=1.6, CI=0.4-6.2). Hancock et al. (2008), which was previously described, also examined the risk of exposure to two classes of insecticides: OC and organophosphates. There was an increased risk of PD associated with OC pesticide exposure (OR=1.99, CI=1.09-3.64). Elbaz et al. (2009) found in this previously described study that in men, insecticides were associated with PD (OR=2.2, CI=1.1-4.3) and OC pesticides (mainly lindane) in particular (OR=2.4, CI=1.2-5.0).

The Faroe Island study (Peterson et al., 2008), also previously described, looked specifically at β-HCH, which is persistent in the marine environment, was found at increased levels among the Faroese due to consumption of traditional foods such as whale blubber. Current β-HCH levels among the Faroese were associated with an increased risk of PD (OR=1.4, CI=1.1–2.0). Richardson et al. (2009) conducted a case-control study in which 50 PD patients, 43 controls, and 20 patients with Alzheimer’s disease (AD) who had been seen at the University of Texas Southwestern Medical Center on June 10, 2002 and Dec. 31, 2007 had serum levels of 19 OC pesticides measured. The researchers identified β-HCH, which was the main OC compound present, age, and sex (being male) as predictor variables for PD status. β-HCH was detectible in the largest number of PD patients (76%, detectible range 0.12/1.80 ng/mL) of any of the pesticides tested. The OR for PD among those with β-HCH levels was over four
times higher compared to controls (OR=4.39, CI= 1.67 – 11.6). There was no statistical difference observed with any of the other pesticides. The authors noted that β-HCH levels remained constant over time: there was no difference in β-HCH levels in samples taken at the two time points (6/10/2002 and 12/31/2007). This is largely because the half-life of β-HCH is approximately 8 years, which means there could be a decreased clearance of β-HCH in the PD patients. Future studies with DNA samples and demographic data on environmental factors such as smoking would provide a way to determine whether β-HCH levels were the result of genetic polymorphisms in one or more enzymes involved in the metabolism of β-HCH or environmental factors.

Weisskopf et al. (2010) used Finnish Mobile Clinic (FMC) Health Examination Survey data to form a nested case-control study within this survey population. Serum samples were collected during 1968 to 1972 and analyzed in 2005-2007 for OC pesticides. Incident PD cases were identified through the Social Insurance Registry and confirmed by review of medical records. There were 101 cases and 349 controls matched for age, sex, municipality, and vital status. Locations of cases were rural, semi-rural and industrial communities. Nine persistent OC pesticides were investigated. Only five OC pesticides were found at levels higher in the FMC than the United States National Health and Nutrition Examination Survey (NHANES) population, so these were the pesticides of focus chosen by the authors. These included β-hexachlorocyclohexane (β-HCH), p,p’-dichloro-diphenyl-dichloroethylene (p,p'DDE), hexachlorobenzene (HCB), and dieldrin. Cases and controls were 20-79 years old at baseline. Because of strong confounding by cigarette smoking among smokers, analyses were restricted to never smokers (n=68 cases, n= 183 controls). Only dieldrin had a significant association with PD among never smokers (aOR=1.95, CI=1.26-3.02, p=0.003), when adjusted for age, sex, region, smoking, triglycerides, cholesterol and other pesticides. Increasing dieldrin concentrations were associated with increased but non-statistically significant ORs (OR per inter quartile range =1.28, CI=0.97-1.69, p=0.08). Drawbacks to the study include that there was a one-time-only measurement of pesticides in serum and this measurement happened decades before the development of PD. Thus, variations in exposure to the pesticides after FMC blood collection are not captured and could introduce measurement error since past exposures do not necessarily predict future exposures. Five pesticides were at higher concentrations in FMC than NHANES because FMC blood was collected before bans on these pesticides in Finland. Based on chemical properties, toxicokinetics, and use patterns, the authors determined that cyclodienes, including dieldrin, are among the more likely candidates to contribute to the development of PD. Dieldrin use was banned in Finland in 1969.
Richardson et al. (2011) conducted a case-control study (n=283) to investigate the association between β-HCH levels in blood serum and PD development. Four cohorts representing two discrete time periods (2001-2003 vs. 2006-2008) at two sites were matched by age and by gender; however, the study did not control for smoking. The reported adjusted odds ratio (OR) was from 1.02 to 1.12 for risk of PD per 1 ng/mg increase in β-HCH serum levels across the four cohorts and OR=1.03 (CI=1.00–1.07, p = 0.031) in the pooled analysis. The OR in subjects with β-HCH levels above the inter-quartile range of 39.08 ng/mg cholesterol was 2.85 (CI= 1.8-4.48; p value < 0.001). The authors concluded that elevated levels of serum β-HCH were associated with increased risk for PD development.

Lack of association

The studies which, for the most part, could find no association between OC pesticide exposure and risk of PD are summarized here. In some cases, however, the studies were mixed with both positive and no associations. All of the studies which follow were already described in the general pesticides section, but analyses on OCs specifically are highlighted here.

Hertzman et al. (1994) did not find a statistically significant association between PD development and exposure to OC as a group of pesticides in a case-control study carried out in a horticultural region of British Columbia. The authors estimated exposure through an occupational exposure questionnaire.

The review article by Brown et al. (2006) included one paper related to OC exposure that was not included in our review. Kamel et al. (2001) found an elevated increase for OC pesticide exposure, but it was not a statistically significant (OR=1.8 , CI=0.9- 3.2).

A later paper by Kamel and colleagues (2006) evaluated the risk of PD due to exposure to the OC pesticides aldrin, dieldrin, chlordane, DDT, heptachlor, lindane, and toxaphene. Exposure was estimated through a self-administered questionnaire. However, there were no statistically significant odds ratios for either prevalent or incident PD and any of these pesticides (e.g., aOR=1.4 for incident PD and lindane, CI=0.8-2.5). The OR was adjusted for age, state, and type of participant (applicator or spouse).

Rugbjerg et al. (2011) did not find a statistically significant association with self-reported OC pesticide exposure after adjustments for gender, birth year (5-year age groups), and smoking (cumulative pack-years) (aOR=1.23, CI=0.53, 2.85).

Pezzoli and Cereda (2013) investigated the risk of PD associated with exposure to pesticides and solvents using meta-analyses of data from cohort and case-control studies. The authors included prospective cohort and case-control studies providing risk and precision estimates. No association was observed with exposure to OC pesticides.
Organophosphorus
Commonly used organophosphorus (OP) pesticides (also called organophosphates) have included parathion, malathion, methyl parathion, chlorpyrifos, and diazinon, among others. Of the 8 studies analyzing an association between OP pesticide exposure and PD development, 3 studies provided statistically significant evidence to support this association and 5 studies did not have statistically significant evidence. Out of the 3 studies reporting increased risk of PD due to OP pesticide use, statistically significant ORs ranged from 1.89 to 2.5. There was only one study which found a statistically significant association between a specific OP pesticide (chlorpyrifos) and PD. The other two studies examined OP pesticides in general. Although other studies examined malathion, parathion, and diazinon, these were no statistically significant associations with PD. Risk factors for PD previously mentioned still apply (e.g. smoking reducing the risk of PD). Collectively, the studies support a multifactorial etiology of PD, influenced by family history of PD, head trauma, and pesticide exposure. The limitations of the studies included exposure misclassification, recall bias, small sample size, and competing risk factors that may not have been taken into consideration.

Positive association
The studies which, for the most part, found a positive and statistically significant association between OP pesticide exposure and risk of PD are summarized here. In some cases, however, the studies were mixed with both positive and no associations. With the exception of Amanpreet et al. (2008), all of the studies have already been described in the general pesticides section.

The case-control study conducted in Germany by Seidler et al. (1996;) found that PD patients were more likely than control subject to have used alkylated phosphates/carbamates; however, the adjusted OR was statistically significant only for comparison with regional control subjects (aOR=2.5, CI=1.3-4.6). There was no relationship in comparison to neighborhood controls (aOR=1.8, CI=0.9-3.3). Hancock et al. (2008) examined the risk of exposure to two classes of insecticides: organochlorines and organophosphates. Exposure to organophosphorous pesticides was associated with an increased risk of PD (OR=1.89, CI=1.11-3.25).

Amanpreet et al. (2008) conducted a case-control study in Texas in order to identify the risk of PD associated with specific pesticide and chemical products. The authors identified cases (n=100) and controls (n=84) from a cohort of PD patients from a neurology practice. Inclusion criteria (age >=50, location of residence in East Texas, diagnosed with PD by standard clinical/lab diagnostic criteria by a neurologist specializing in movement disorders etc.) were identical for cases and controls; the only difference between the two was that controls had no history of PD. A questionnaire gathered
information on demographics, lifestyle activities, family medical history, occupational history, spraying herbicides/pesticides, and use of specific pesticides. There was an increased risk of PD associated with the use of chlorpyrifos products (OR=2.0, CI=1.02-3.8). The authors note that chlorpyrifos are widely used as pesticides in agriculture, as well as in residential settings for termite treatments and lawn care. Although the risk of malathion and parathion exposures were also examined, malathion had an elevated risk that was not statistically significant (OR=1.3, CI=0.7-2.4) and parathion did not have an elevated risk (OR=0.7, CI=0.2-2.5). The small sample size of this case-control study likely limited the ability to find statistically significant results.

Lack of association
The studies which, for the most part, could find no association between OP pesticide exposure and risk of PD are summarized here. In some cases, however, the studies were mixed with both positive and no associations. All of the studies which follow were already described in the general pesticides section, but analyses on OPs specifically are highlighted here.

Firestone et al. (2005) demonstrated that the odds ratio for OP were elevated but not statistically significant (OR=1.07, CI=0.46-2.49). The authors reported that the odds ratios for OP paralleled the World Health Organization hazard classifications, with parathion (OR=8.08, CI=0.92-70.85) much higher than diazinon (OR=1.04, CI=0.35-3.06) or malathion (OR=1.01, CI=0.37-2.72), but none of which were statistically significant. Kamel et al. (2006) examined the association of several OP pesticides and prevalent and incident PD. While there was an elevated risk for prevalent PD from exposure to chlorpyrifos, it was not statistically significant (OR=1.2, CI=0.7-2.1). There was also an elevated risk for incident PD associated with malathion exposure but this was not statistically significant either (OR=1.2, CI=0.6-2.1).

Firestone et al. (2010) examined occupational exposures to specific pesticides; the only increased risk estimate was for men exposed to parathion (OR=5.8, CI=0.66-50.8), the most potent of the OP reported. However, this was not statistically significant. There were no statistically significant associations for parathion, malathion, or diazinon, either.

Rugbjerg et al. (2011) did not find a statistically significant association between OP pesticide exposures that had been reviewed by an industrial hygienist and PD (OR=0.74, CI=0.20-2.78). The authors note that since the self-reported risk estimates were uniformly higher, this could suggest that recall bias is at play.

Pezzoli and Cereda (2013) investigated the risk of PD associated with exposure to pesticides and solvents using meta-analyses of data from cohort and case-control studies. The authors included
prospective cohort and case-control studies providing risk and precision estimates. No association was observed with exposure to OP.

Botanical
Botanical pesticides include rotenone, pyrethrins, and neem, among others. Of the 3 studies analyzing an association between botanical pesticide and PD development, all provided statistically significant evidence to support this association. Rotenone was the only botanical pesticide for which ORs were reported. These ORs ranged from 1.7 to 10.9. The highest OR was associated with exposure from gardening in the past year. In the same study, any rotenone use had only a slightly lower risk (OR=10.0). Risk factors for PD previously mentioned still apply (e.g. smoking reducing the risk of PD). Collectively, the studies support a multifactorial etiology of PD, influenced by family history of PD, head trauma, and pesticide exposure. The limitations of the studies included exposure misclassification, recall bias, small sample size, and competing risk factors that may not have been taken into consideration.

Positive association
The studies which, for the most part, found a positive and statistically significant association between OP pesticide exposure and risk of PD are summarized here. In some cases, however, the studies were mixed with both positive and no associations.

Amanpreet *et al.* (2008), which was previously described, also examined rotenone exposure and PD risk. The risk of PD for use of organic pesticides such as rotenone in the past year in gardening was 10.9 (CI=2.5-48.0). For any rotenone use, the risk was slightly lower (OR=10.0, CI=2.9-34.3). Tanner *et al.* (2011) conducted a case control study nested in the Agricultural Health Study (AHS), which assessed lifetime use of pesticides that either inhibit mitochondrial complex I or cause oxidative stress and the relationship with PD. The AHS cohort members included private pesticide applicators and their spouses. The controls were matched to cases by age, sex, and state (Iowa or North Carolina) at a ratio of approximately 3 controls per case. Diagnosis of PD was determined by agreement of two neurologists after independent review. Pesticide use was assessed by computer-assisted telephone interviews. Based on 110 PD cases and 358 controls, PD was associated with the use of a group of pesticides that inhibit mitochondrial complex I (OR= 1.7, CI=1.0–2.8), which includes rotenone (OR=2.5, CI=1.3–4.7).

Kamel *et al.* (2006) did report an OR for rotenone and prevalent PD (OR=1.7), but no CI was reported. This OR was based on anywhere from 4-10 cases (specific number not cited for rotenone). It is likely that an association was not detected due to the small sample size, but without a CI, the direction of the association cannot be determined.
Quaternary Ammonium

The primary pesticide in this category includes paraquat. Of the 8 studies analyzing an association between quaternary ammonium pesticide exposure and PD development, 3 studies provided statistically significant evidence to support this association and 5 studies did not have statistically significant evidence. Out of the 3 studies reporting increased risk of PD due to quaternary ammonium pesticide use, statistically significant ORs ranged from 1.36 to 3.01. The highest OR was associated with paraquat exposure among traumatic brain injury patients. The risk of PD for paraquat exposure alone ranged from 1.36 to 2.5. Paraquat was the only quaternary pesticide evaluated in these studies. Risk factors for PD previously mentioned still apply (e.g. smoking reducing the risk of PD). Collectively, the studies support a multifactorial etiology of PD, influenced by family history of PD, head trauma, and pesticide exposure. The limitations of the studies included exposure misclassification, recall bias, small sample size, and competing risk factors that may not have been taken into consideration.

Positive association

The studies which, for the most part, found a positive and statistically significant association between quaternary ammonium exposure and risk of PD are summarized here. In some cases, however, the studies were mixed with both positive and no associations. All of the studies which follow, with the exception of Costello et al. (2009) and Lee et al. (2012) were already described in the general pesticide section, but analyses on paraquat specifically are highlighted here.

Costello et al. (2009) conducted a study of 377 PD cases and 341 controls to examine the association between pesticide exposure and PD. Logistic regression was used to control for age, sex, and race. GIS modeling of the pesticide use registry (PUR) provided estimates of actual pesticide exposure, which is an improvement over memory responses from surveys. The combined exposure to maneb (dithiocarbamate) and paraquat resulted in an increased risk of PD (OR=1.74, CI=1.13–2.73).

Tanner et al. (2011) examined the use of a group of pesticides that cause oxidative stress and found an increased risk (OR=2.0; CI=1.2–3.6). Paraquat, which falls into this group, was also associated with an increased risk (OR=2.5; CI=1.4–4.7).

Lee, et al. (2012; A case-control study involving 357 incident idiopathic PD cases and 754 population controls in Central California (Fresno, Kern and Tulare counties) investigated PD risk due to both traumatic brain injury (TBI) and exposure to pesticides (specifically paraquat). The authors reported a two-fold increase of PD risk for PD patients reporting a TBI (aOR=2.00, 95% CI 1.28–3.14) and a moderate (but weaker) PD risk for exposure to paraquat alone (aOR = 1.36, 95% CI 1.02 – 1.81). However, the risk for developing PD increased three-fold (aOR= 3.01, 95% CI 1.51-6.01) in TBI patients.
exposed to paraquat. The authors concluded that exposure to these two risk factors may act together to increase PD risk in a more than additive manner.

Lack of association

The studies which, for the most part, could find no association between paraquat exposure and risk of PD are summarized here. In some cases, however, the studies were mixed with both positive and no associations.

Hertzman *et al.* (1994), as previously reported, did not find a statistically significant association between PD development and exposure to paraquat among men in a case-control study carried out in a horticultural region of British Columbia (OR=1.25, CI=0.34-4.63).

Kamel *et al.* (2006) reported an elevated OR for paraquat and prevalent PD and it was of statistically significant (OR=1.8, CI=1.0, 3.4). There was not an association with incident PD and paraquat.

Elbaz *et al.* (2009) previously described, also looked at paraquat exposure; however, no statistically significant association was found (for men over age of 65, OR=1.4 (CI=0.6–3.1). The authors indicate that there may be several reasons an association was not found: 1) paraquat is mainly used as a nonselective herbicide to kill weeds around fields, thus resulting in lower exposure levels compared to other herbicides 2) if gene-environment interactions are involved, paraquat may be associated with PD only among susceptible individuals and 3) toxicological studies have suggested that maneb (dithiocarbamate fungicide) and paraquat act synergistically.

Wang and co-authors (2011) conducted a case-control study (362 incident PD case and 341 controls) among residents of Central Valley, California to investigate association between residential and occupational exposure to ziram, maneb, and paraquat and the risk for PD. GIS-based models were used to estimate both residential and occupational exposure to ziram, maneb, and paraquat from 1974 – 1999. Pesticide Regulation Pesticide Use Report (PUR) data were combined with land use maps and geocoded address information to estimate exposure within a 500-m radius around occupational/residential addresses. The PD risk was estimated for ambient exposures to each pesticide separately and in combinations for both occupational and residential exposures. The combined exposure to maneb, ziram, and paraquat showed a stronger association with PD development than exposure to these individual pesticides alone; those results are described in the carbamate section, below. There was no association between exposure to paraquat and PD for residential exposure alone (OR= 0.77, CI=0.50-1.17); there was also no statistically significant association for workplace exposure only (OR=1.07,
CI = 0.59 – 1.96), but there was a weak statistically significant association for both residential and occupational exposure combined (OR = 1.50, CI = 1.03 – 2.18).

A retrospective cohort study conducted in UK reported no evidence of increased mortality from PD (as the underlying or contributing cause of death) among paraquat workers Tomenson and Campbell (2011). The study population was a cohort of workers in Widnes, UK who manufactured paraquat in any of four plants between 1961 and 1995. The cohort group was comprised of 926 males and 42 females as of 6/30/2009. However, females were excluded from the final analysis because of their small numbers. Paraquat exposure was assessed qualitatively for 729 male workers based on their highest exposure to 11 substances including paraquat. Approximately 300 of the 729 workers had high or medium exposure to paraquat. Workers with high exposures were engineering maintenance workers in two plants, and process operators and plant supervisors from all plants. By 06/30/2009, there had been one death from PD as the underlying cause of death, but zero deaths which mentioned PD as a contributing cause among 307 workers. Standardized mortality ratios (SMRs) were calculated using local and national mortality rates. The SMR using local mortality rates was 31 (CI = 1-171) and the SMR for local mortality rates was 32 (CI = 1–176) for local mortality. The authors concluded that there was no evidence of increased mortality (underlying and mentioned cause) from PD. The following were some limitations of this study: 1) PD could only be ascertained if underlying or contributing cause of death was recorded on the death certificate and 2) a full quantitative paraquat exposure assessment was not conducted. However, the authors argued that the latter was not a limitation because the one worker who died of PD was assessed as having a medium exposure to paraquat and that the level of exposure had declined drastically between 1979 and 1993.

Carbamate or Dithiocarbamate

This type includes the carbamate pesticide methomyl and dithiocarbamate pesticides maneb, zineb, ziram, and mancozeb. Of the 4 studies analyzing an association between carbamate or dithiocarbamate pesticide exposure and PD development, 2 studies provided statistically significant evidence to support this association and 2 studies did not have statistically significant evidence. Out of the 2 studies reporting increased risk of PD due to dithiocarbamate pesticide use, statistically significant ORs ranged from 1.74 to 8.09. The study with the OR of 1.74 examined the residential exposure to a mixture of maneb, a dithiocarbamate, and paraquat, described in the previous section. This OR was adjusted for occupational exposure. The risk of PD was higher among younger individuals (under age 60) exposed to maneb and paraquat compared to those diagnosed at age 60 and over. The highest OR was among those individuals exposed to a combination of maneb and paraquat residually and occupationally. In
this case, the workplace exposures estimates were higher than residential. This study also indicated that exposures were especially high for those workers diagnosed with PD before the age of 60. Risk factors for PD previously mentioned still apply (e.g. smoking reducing the risk of PD). Collectively, the studies support a multifactorial etiology of PD, influenced by family history of PD, head trauma, and pesticide exposure. The limitations of the studies included exposure misclassification, recall bias, small sample size, and competing risk factors that may not have been taken into consideration.

Positive association
The studies which, for the most part, found a positive and statistically significant association between carbamate exposure and risk of PD are summarized here. In some cases, however, the studies were mixed with both positive and no associations. All of the studies which follow were already described in the general pesticides section, but analyses on carbamates specifically are highlighted here.

Costello et al. (2009) enrolled 368 incident PD cases and 341 population controls from the Central Valley of California in a case-control study between 1998-2007. The authors developed and validated an exposure assessment tool based on geographic information systems that integrated information from California Pesticide Use Reports (PUR) and land-use maps to estimate historical exposure to agricultural pesticides in the residential environment. They generated estimates for maneb and paraquat exposures incurred between 1974 and 1999. Combined exposure to both pesticides within 500 m of the home increased PD risk by 75% (OR=1.75, CI=1.13-2.73), compared to no exposure to these pesticides. After adjustment for occupational pesticide exposure, the OR remained essentially the same (OR=1.74, CI=1.11-2.72). Cases under the age of 60 years at the time of diagnosis were at much higher risk when exposed to both maneb and paraquat in combination (OR=4.17, CI=1.15-15.16) as compared to no exposure during the period of 1974–1989.

A case-control study by Wang and co-authors (2011), reported that the combined exposure to maneb, ziram, and paraquat at both workplace and residential settings resulted in a substantially greater increase of the risk for PD than exposure to these individual pesticides alone. The study showed that combined exposure to ziram, maneb and paraquat at workplaces increased risk of PD three-fold (OR=3.09, CI=1.69 – 5.64), while combined exposure to ziram and paraquat (without maneb) resulted in an 80% increased risk (OR=1.82, CI=1.03 – 3.21). Workplace exposure estimates were higher than residential and those were especially high for those workers diagnosed with PD at a younger age (before age 60) and exposed to the combination of maneb and paraquat both occupationally and residually (OR=8.09, CI=2.31 – 33.19). The risk of PD for combined exposure to ziram and paraquat was 5.98 (CI=1.95 – 18.32). The authors suggested that the different mechanisms by which the individual
chemicals contribute to dopaminergic neuron death may act together to dramatically increase the risk of PD. This was the first epidemiologic study reporting 1) effects of ziram and PD risk 2) ambient exposure to pesticides at work being associated with a greater risk of PD than residential exposure alone; and 3) workers who were also exposed at home had the greatest risk of developing PD.

Lack of association

The studies which, for the most part, could find no association between carbamate exposure and risk of PD are summarized here. In some cases, however, the studies were mixed with both positive and no associations. Both studies have already been described previously.

Hertzman et al. (1994) did not find a statistically significant association between PD development and exposure to dithiocarbamates (including ferbam) among men in a case-control study carried out in a horticultural region of British Columbia (OR=1.06, CI=0.48, 2.37). Kamel et al. (2006) found an elevated but non-statistically significant OR for carbamate and incident PD (OR=1.7, CI=0.7, 3.7). There was no association between prevalent PD and carbamate.

2. Pesticide Exposure with Genetic Interactions

Recent research of PD pathogenesis has revealed that certain environmental-genetic interactions may contribute more to the PD development than environmental or genetic factors alone. Multiple epidemiological studies investigated the effect of pesticide exposure on genetically susceptible individuals/populations or gene-environment relationship for the development of PD. This means that specific genotypes may either enhance or diminish the impact of pesticide exposure on the development of PD. The studies are summarized here by the type of pesticides evaluated for potential interaction with the genetic makeup of exposed individuals. The studies presenting positive associations between pesticide exposure and risk of PD are summarized first.

Pesticides (General)

Of the 11 studies analyzing an association between general pesticide exposure and PD development with possible genetic interactions, 6 provided statistically significant evidence to support an interaction effect between pesticide exposure and genes in modulating the risk of PD and 5 studies did not have statistically significant evidence that there was an interaction between genes and pesticide exposure in PD risk. Out of the 6 studies reporting an increased risk of PD due to general pesticide exposure interacting with genes, statistically significant ORs ranged from 3.17 to 4.9. Genotypes which were implicated include CYP2D6, *MDR1*, *MnSOD*, *NQO1*, and *NOS1* SNPs. These genotypes have been
associated with metabolism of pesticides or other chemicals. Of the 5 studies that did not have evidence of an interaction between genes, pesticide exposure and PD, the genotypes included SNCA, GST, MAO-A, and MDR1. For 2 studies, the association between PD and pesticide exposure alone could not be determined. Collectively, the studies indicate that genotypes may interact with pesticide exposure to increase the risk of PD. The limitations of the studies included exposure misclassification, recall bias, small sample size, and competing risk factors that may not have been taken into consideration in statistical analyses.

Positive association with interaction

The studies which, for the most part, found a positive and statistically significant association between general pesticide exposure and PD development with genetic interactions are summarized here. In some cases, however, the studies were mixed with both positive and no associations.

Hubble et al. (1998) conducted a study among PD patients with dementia (PD+D) and the controls were those without dementia (PD-D). The authors sought to examine the interaction between non-genetic variables and three candidate gene markers: poor debrisoquine metabolizer allele (CYP 2D6 29B+), monoamine oxidase B allele 1, and apolipoprotein E ε4 allele. Subjects with PD were recruited from the outpatient clinic of the Parkinson’s Disease Center at the University of Kansas Medical Center. PD was defined by the presence of 2 of 3 cardinal features reported by the authors including tremor, rigidity and bradykinesia and sustained responsiveness to levodopa therapy. Patients with a history or clinical features suggestive of atypical parkinsonism and patients who developed clinically obvious cognitive deficits prior to the motor deficits of PD were excluded. The determination of dementia was based on the Mattis Dementia Rating Scale (DRS). Controls were subjects with total DRS scores above 136, no single DRS subtest score more than 2 standard deviations below the mean and no clinical suspicion of mild dementia. Pesticide exposure was reported by the patient through questionnaire. Exposure was defined as pesticide use for more than 20 days within any calendar year. The initial model looked at genetic and non-genetic variables in a stepwise fashion. There was not a relationship between CYP 2D6 29B+ and PD + D (p=0.659). When pesticide exposure was combined with different variables to assess interactions, the results were mixed. The only significant relationship was with the poor metabolizer gene (CYP 2D6 29B+). There was an approximately three-fold increased risk of PD+D given pesticide exposure and presence of the poor metabolizer gene (OR=3.17, CI=1.11–9.05). The authors suggested that pesticide exposure and CYP 2D6 29B+ interact to increase the risk of PD+D. There was no relationship with pesticide exposure combined with the monoamine oxidase B allele 1 or the apolipoprotein E ε4 allele.
Drozdzik et al. (2003) recruited 107 PD cases and 103 matched controls of Polish origin from Western Pomerania, Poland. A total of 107 unrelated patients with idiopathic PD (56 males, 51 females) aged 24–82 years were enrolled in the study as cases. All patients were examined by consultant neurologists. PD was diagnosed if at least two of the four main signs of the disease reported by the authors (i.e. tremor at rest, rigidity, hypokinesis, and postural reflex impairment) were observed. There is a hypothesis about association between the 3435TT genotype of the MDR1 gene and early onset PD. The risk of PD development in patients exposed to pesticides versus non-exposed subjects was significantly increased in heterozygous (3435CT) patients (OR=2.9, CI=1.2–7.1, p<0.01), non-statistically significant in homozygous (3435TT) patients (OR=1.3, CI=0.4–4.4) and approximately five times higher for both groups together (3435CT + 3435TT) (OR=4.9, CI=1.7–14.6). In summary, this study revealed an association between the MDR1 gene polymorphism and PD in subjects exposed to pesticides. Consequently, the authors indicate that prevention or treatment methods could be implemented in those individuals with the 3435T allele who are exposed to pesticides. These methods could include elimination of exposure to pesticides or, if this is not possible, provide antioxidants to reduce the effects on brain cells.

Elbaz et al. (2004) performed a case-control study of PD in a population characterized by a high prevalence of pesticide exposure and studied the joint effect of pesticide exposure and cytochrome P450 D6 (CYP2D6*4) gene activity with PD. Subjects (190 cases and 419 controls) were selected among those enrolled in a French health insurance for agricultural workers. As part of the study protocol, they were examined by a neurologist with experience in movement disorders. Whenever it was impossible to directly examine the patient, the patient’s treating neurologist was contacted to obtain clinical information. PD was defined as the presence of parkinsonism (presence of at least two cardinal signs: rest tremor, bradykinesia, rigidity, impaired postural reflexes) after exclusion of other causes of parkinsonism. Controls were recruited among all Mutualité Sociale Agricole affiliates who made requests to be reimbursed for health care expenses. A maximum of three controls were matched to each case for age, sex, and region of residency. Cases between ages 18-75 had submitted coverage for PD. Pesticide exposure was assessed by occupational health physicians using an individual “expert evaluation procedure.” Occupational pesticide exposure combined with low CYP2D6*4 (two alleles) activity resulted in increased risk for PD (OR=4.74, CI=1.29—17.45, p=0.02). When occupational exposure and gardening exposure were combined, the risk was slightly lower for the poor metabolizers (two alleles of CYP2D6*4) (OR=3.28, CI=1.16–9.27). Thus poor metabolizers may have an increased risk of PD with pesticide exposure. Without pesticide exposure, there is no increased risk.
In another case-control study of a Taiwanese population \cite{Fong2007}, the association between exposure to pesticides and the PD risk was examined in conjunction with genotypes implicated in pesticide metabolism: manganese-containing superoxide dismutase (MnSOD, allele-9 T>C) and NAD(P):quinone oxidoreductase 1 (NQO1, allele 609 C>T). PD patients (n=153) and controls (n=155) were matched for age, sex, and origin. PD risk was statistically significantly associated with exposure to pesticides (OR=1.69, CI=1.07–2.65, p=0.023) and this association remained significant after adjustment for age, sex, and cigarette smoking (aOR=1.68, CI=1.03–2.76, p=0.023). Considering genetic factors, there were no significant differences in frequencies of both genotypes of MnSOD and NQO1 polymorphisms between PD patients and the control subjects (p>0.05). However, the difference in genotype distribution was significant among subjects who had been exposed to pesticides, with aOR of 2.49 (CI=1.18–5.26, p=0.0072) for MnSOD C allele and aOR of 2.42 (CI=1.16–4.76, p=0.0089) for NQO1 T allele, respectively. Furthermore the combined MnSOD/NQO1 variant genotype was significantly associated with a 4.09-fold increased risk of PD (CI=1.34–10.64, p=0.0052), among subjects exposed to pesticide. This study provided evidence that susceptible variants of MnSOD and NQO1 genes may interact with occupational pesticide exposure to increase PD risk in southwestern Taiwanese.

Hancock et al. (2008) examined the joint effect of exposure to pesticides and nitric oxide synthase genes, which may create nitric oxide that contributes to neurodegeneration in PD. For the pesticide exposure portion of the study, families with PD were selected. Individuals enrolled through the Udall Center were administered a structured telephone questionnaire to collect detailed environmental risk factor data on demographics, health and habits, and pesticide and other chemical exposures. The pesticide exposure section assessed whether participants applied pesticides at work or in their home, garden, or lawn. Only first-hand exposures were considered. Participants who reported applying pesticides were asked to list the name of any pesticide they remembered using, the number of days it was used, and the years application started and stopped (if applicable). The reported pesticides were classified into specific chemical classes, but sample size was not sufficient to examine gene-environment interactions. Instead, the reported pesticide chemicals were classified more broadly into functional groups (e.g., insecticides or herbicides). Those cases who reported applying these prior to the age at disease onset were considered ever exposed. Gene-environment interaction analyses focused on 163 cases and 178 relatives and other controls from 168 sporadic PD families with environmental risk factor data available. Interactions were found between pesticides (insecticides, herbicides) and the NOS1 SNPs (single nucleotide polymorphisms) rs12829185 (OR=3.12, CI=1.71–5.71), rs1047735 (no OR given), and rs2682826 (OR=3.52, CI=1.78–6.95). The authors indicate that findings support NOS1 and NOS2A as
genetic risk factors for PD and show that these genes might modify the effects of established environmental factors for PD.

Zschiedrich et al. (2009) conducted a large case-control study to investigate the potential relationship between MDR1 variants and PD. MDR1 variants were determined in 599 Europeans (415 PD patients and 184 healthy controls recruited between 1999 and 2006). The population was further stratified by ethnicity, age at PD onset (≤45 years vs. >45) and exposure to pesticides. For 86 German patients and 54 German controls from the population-based study, data on private use of pesticides were obtained through a structured interview (answer options “never,” “very rarely,” “occasionally,” and “regularly.” Occupational exposure to pesticides in these individuals was estimated by using a job exposure matrix (JEM). Patients were classified as “exposed” when either answering “occasionally” or “regularly” in the interview or when obtaining a JEM score of >10. Genomic DNA was extracted from venous blood samples. To test for the potential interaction between the c.3435C/T variant and pesticide exposure with respect to PD risk, a case-only analysis was performed. The case-only analysis revealed a statistically different genotype distribution at the c.3435C/T between PD patients exposed to pesticides compared to those non-exposed (OR=4.74; CI=1.01-22.3; p=0.047). The study demonstrated evidence that genetic variants of the MDR1 might act as a modulator of PD risk in patients exposed to pesticides. Thus variants in MDR1 could be another example of a susceptibility factor increasing the risk for PD in conjunction with an environmental factor, such as pesticide exposure. However no ORs were provided for the relationship between pesticide exposure and PD without variants of MDR1. The authors indicate that the results suggest another link between genetic variants of detoxifying enzymes, pesticide exposure, and PD.

Positive association without interaction

The studies which could find no evidence to support a gene-environment interaction affecting the association between general pesticide exposure and the risk of PD are summarized here.

Fong et al. (2005) conducted a case-control study to investigate the association between paraoxonase I (PNO1) polymorphism, pesticide exposure and risk of PD in Taiwanese population. Patients with idiopathic PD (n=125; 69 women and 56 men) were recruited for the study from a general hospital between July 2002 and June 2004. Unrelated controls (n=162; 90 women and 72 men) matched with the patients on age and sex were recruited from the outpatient clinic with diagnoses of back pain or cervical spondylosis. History of exposure to environmental factors and data on other factors were collected using a questionnaire filled out during a face-to-face interview. These included data on years of farming, drinking water sources, occupational exposure to pesticides, duration of pesticide exposure,
and age at the initial pesticide exposure. A positive exposure was defined as an occupational or residential contact with a given factor for at least 12 months prior to the onset of PD. Buccal mucosa cells were collected from each PD and control subjects to determine PNO1 polymorphism status. There was a statistically significant association between the risk of PD and exposure to pesticides (OR=1.72, CI=1.07-2.75, p=0.025) and the risk of PD did not increase for those who had ever used well water. The relative risk of PD was 2.14 with ≥36 years of exposure to pesticides (OR=2.14, CI=1.23-3.71, p=0.005). There was no difference between the patients and the controls in the genotype of PNO1 (p=0.504).

This study revealed the strong relationship between long-term (≥36 years) exposure to pesticides and the development of PD. No significant differences were observed in the distribution of PNO1 genotypes between PD patients and controls.

Brighina et al. (2008) conducted a case-control study in order to investigate the possible joint effects of SNCA REP1 genotypes and pesticide exposure and the risk of PD. The study involved 833 case-control pairs (472 case-affected sibling pairs and 361 case-unrelated control pairs). Cases (patients with PD) who resided in MN or in one of the surrounding four states (WI, IO, SD, or ND) were recruited prospectively from the Dept. of Neurology at the Mayo Clinic (Rochester, MN) after June 1, 1996. Controls included unaffected siblings of cases or unrelated population control subjects, who screened negative for PD or were confirmed not to have PD by clinical assessment. Cases included more men than the control group (63.6% vs. 57.0%); the median age at PD onset was 61.9 years; case and controls were primarily white and of European descent. Genomic DNA was extracted from leukocytes (venous blood samples were obtained from all cases and controls). Pesticide exposure data were obtained by telephone interview using a structured risk factors questionnaire. Exposure to pesticide was classified as “overall” (occupational, including farming; residential, including gardening; or both) and was categorized by indication for use (herbicides, insecticides, or fungicides) and by chemical group of the active ingredients. Analyses were 1) adjusted for age and sex and 2) performed for subjects overall and stratified by family history of PD, age at study, and sex. The authors observed a statistically significantly increased risk of PD with increasing SNCA REP1 bp length (OR=1.18 for each score unit; CI=1.02-1.37; p=0.03). Pesticide use (ever/never) was not associated with an increased risk of PD in the sample overall (OR=1.11, CI= 0.89-1.38, p=0.37); however, pesticide use was associated with PD in younger subjects only (≤59.8 years, OR=1.80, CI=1.12-2.87, p=0.01). For the functional pesticides subgroups (herbicides, insecticides, or fungicides), only herbicides use was associated with PD and only in younger subjects (OR=2.46, CI=1.34-4.52, p=0.004). This may be related to the fact that in this study population, the frequency of pesticide exposures considered separately were significantly greater in younger than in
older subjects. Patients with PD were more likely than controls to use pesticides belonging to the chlorophenoxy acid or esters chemical class, which are used as herbicides (OR=1.52, CI=1.04-2.22, p=0.004). Furthermore, 2,4-D was the most commonly reported chlorophenoxy herbicide by the study subjects. No other subclass was significantly associated with PD, though there were 44 different chemical subclasses of pesticides identified. Also, the number of chemical subclasses reported was greater in younger than older subjects. In multivariate analysis, both SNCA REP1 score and pesticide exposures were statistically significantly associated with PD in younger subjects, but there were no pairwise interactions; the latter finding suggests other genetic loci confer susceptibility to PD in families.

After restricting the susceptibility analysis to the youngest quartile of subjects, the best-fitted model included SNCA REP1 genotype score and herbicides; both SNCA REP1 genotype score (OR=1.65, CI=1.16-2.35) and herbicides (OR=2.39, CI=1.29-4.41) were significant. The study findings suggest that SNCA REP1 genotype and exposure to herbicides have independent effects on risk of PD, primarily in younger individuals.

Kiyohara et al. (2010) examined the relationship of the seven GST polymorphisms (GSTM1 deletion, GSTT1 deletion, GSTP1 rs1695, GSTO1 rs4925, GSTO1 rs11191972, GSTO2 rs156697 and GSTO2 rs2297235) and risk of PD, with special reference to the interaction with self-reported use of pesticides (home pesticide use, occupational pesticide use, and either home or occupational pesticide use) or cigarette smoking. This case-control study involved 238 PD patients as cases and 370 controls recruited from a Japanese population. PD patients were recruited at hospitals in Fukuoka Prefecture, Kyushu Island (southern Japan), Osaka, Kyoto, and Wakayama Prefecture. Eligible cases were those within 6 years of PD onset and presented at one of the 11 collaborating hospitals between April 1, 2006 and March 31, 2008. Hospital controls were recruited from among patients without a previous diagnosis of a neurodegenerative/malignant disease. Controls were not matched to cases. Genomic DNA was extracted from buccal samples. An unconditional logistic regression model was developed for each polymorphism (presence or absence of a null allele or a number of less active alleles) and was used to predict PD status. There were three measures for biologic interactions (additive scale): 1) the relative risk, 2) attributable proportion, and 3) synergy index. No statistically significant ORs, adjusted for age, sex, smoking status, pesticide exposure, and region of residence, were found for the GST polymorphisms, indicating that none of the GST polymorphisms was associated with PD. Cigarette smoking was statistically significantly associated with decreased risk for PD, however, no interaction was observed with any of the GSTs studied. Self-reported pesticide use was not associated with increased risk of PD (home pesticide use: p=0.19; occupational pesticide use: p=0.74; either home or occupational
pesticide use: p=0.16). There was no evidence of interaction between self-reported pesticide use and either GST polymorphism. The study assessed interactions between the GST01 rs4925 and GST02 re156697 SNPs and pesticide use, specifically. The results suggest that the tested GST polymorphisms did not have an important role in PD susceptibility in the studied Japanese population. The power of the study to detect an interactive effect between GSTP polymorphisms and pesticide use was low due to a small number of pesticide users.

Unknown association without interaction

The studies which found no evidence to support a genetic interaction with the risk of PD, but did not specifically address the contribution of pesticide exposure to PD risk alone are summarized here.

A case-control study of 959 prevalent cases of parkinsonism (767 with PD) and 1989 controls was carried out across five European centers by Dick and co-authors (2007b). Occupational hygienists estimated the average annual intensity of exposure to solvents, pesticides and metals, (iron, copper, manganese) and were blind to disease status. There was a modest but significant association between the MAO-A polymorphism in males and the risk of PD (G vs T; aOR=1.30, CI =1.02-1.66). Also, the gene-environment interactions analysis for all cases (parkinsonism and PD) yielded little evidence of interaction effects between environmental and genetic factors; none of the analyses conducted being significant at the 5% level. However, the authors noted that a number of interactions may be worthy of further study. There were possible interaction effects between GSTM1 null genotype and solvent exposure (which were stronger when limited to PD cases only). For polymorphism PON55 in combination with pesticide exposure, there was an aOR of 4.4 (CI=0.88 to 22.3, p=0.07) adjusted for age, sex, country, ever used tobacco containing product, ever knocked unconscious and first degree family history of PD.

Kiyohara et al. (2013) recruited 606 subjects (238 PD cases and 368 controls) from various hospitals in Japan. Prevalent cases were within 6 years of the onset of PD and presented at one of the hospitals included in the study. The study aimed to determine the impact of the MDR1 C3435T polymorphism on PD risk alone or in combination with environmental factors (smoking status, alcohol use, pesticide use). Subjects with the TT genotype of the MDR1 C3435T polymorphism showed a non-significantly increased risk of PD (OR=1.49, CI=0.85-2.25) compared with those with the CC genotype. A gene-environment interaction was suggested only for alcohol consumption, with a combination of at least one T allele and ever drinking alcohol conferring significantly higher risk of PD (OR=1.83, CI=1.07-3.15, p=0.029), compared with the CC genotype and never drinking alcohol.
Organochlorine (OC) pesticides include DDT, aldrin, dieldrin, heptachlor, chlordane, and lindane, among others. Lindane is also known as gamma-hexachlorocyclohexane (HCH). Technical-grade HCH was used as an insecticide in the United States and typically contained 10-15% gamma-HCH as well as the alpha (α), beta (β), delta (δ), and epsilon (ε) forms of HCH (http://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=138). Only one OC study examined the gene-OC pesticide exposure interaction. While there was a positive association between OC exposure and the risk of PD, the gene ABCB1 did not modify this risk.

Positive association without interaction
The studies which could find no evidence to support a gene-environment interaction affecting the association between general pesticide exposure and the risk of PD are summarized here.

Dutheil et al. (2010) conducted a case-control study to examine the association between PD and two polymorphisms in the gene ABCB1, as well as the interaction between ABCB1 polymorphism and OC insecticides. Patients enrolled in the French health system for agricultural workers (Mutualité Sociale Agricole) with PD (n=207) were examined by a neurologist and were matched to controls (n=482). Participants were classified as never users of pesticides, users of pesticides for gardening, and professional users of pesticides. Detailed information on lifelong pesticides use was obtained for professional users by occupational health physicians. Pesticides were coded using a pesticide dictionary and were grouped into various categories of pesticides. However, the authors focused on OC pesticides because in previous studies they were found to display the most robust association with PD and a dose-effect trend. Males with OC insecticide exposure (confirmed non-gardening exposure) were found to have an increased risk of PD (OR=2.2, CI=1.1-4.5.), which was statistically significant. The occurrence of two ABCB1 polymorphisms (C3435T, G2677) did not differ between cases and controls (p=0.43 and p=0.97, respectively). Although statistically not significant, the risk of PD among those men who had OC exposure and were homozygous carriers of variant G2677 (A,T) was 3.5 (CI=0.9-14.5).

Organophosphorus
Commonly used organophosphorus (OP) pesticides (also called organophosphates) have included parathion, malathion, methyl parathion, chlorpyrifos, and diazinon, among others. Of the 2 studies analyzing an association between OP pesticide exposure and PD development with possible genetic interactions, both provided statistically significant evidence to support an interaction effect between OP pesticide exposure and genes in modulating the risk of PD. Both studies examined the PON1-55 genotype and one study examined the PON1-192QQ. There was an interaction effect with chlorpyrifos
(OR=2.61) for the MM genotype compared to unexposed heterozygous carriers in one study and in another the OR was 2.45. There was also increased risk for chlorpyrifos exposure for individuals with the PON1-192QQ genotype (OR=1.95). The highest risk for PD was when there was chlorpyrifos and both genotypes (OR=3.28). Diazinon exposure in combination with the MM genotype also increased risk (OR=5.30). The PON1 gene appears to play a mediating role in the etiology of PD among individuals exposed to chlorpyrifos, diazinon, and potentially other pesticides which are detoxified by PON1 enzymes.

Positive association with or without interaction

The studies which, for the most part, found a positive and statistically significant association between general pesticide exposure and PD development with and without genetic interactions are summarized here.

Manthripragada et al. (2010) examined the association between PD and exposure to diazinon, chlorpyrifos, parathion as well as the influence of the PON1-55 MM variant genotype on PD risk. From 2001 to 2008, 351 cases and 363 controls were recruited from three rural California counties. Pesticide exposure was assessed by self-reporting and a geographic information system (GIS). The authors found an increased risk of PD among carriers of PON1-55 MM exposed to OP pesticides (OR=2.2, CI=1.1-4.5) compared to the heterozygous genotype and those not exposed. Carrying the MM genotype and having been exposed to chlorpyrifos increased the risk of PD nearly three times compared to unexposed wildtype/heterozygous PON1-55 carriers (OR=2.61, CI=1.25–5.44). Those who were exposed to chlorpyrifos but did not carry the homozygous variant genotype experienced a moderate increase in PD risk (OR=1.48, CI=1.04–2.12). For chlorpyrifos exposure among those individuals with an onset of PD at age 60 or younger and MM genotype carriers, there was also an increased risk (OR=5.3, CI=1.7-16). For diazinon exposure among individuals with carriers of the MM genotype, there was a doubling of risk compared with individuals with the wildtype or heterozygous genotype and no diazinon exposure (OR=2.24, CI=1.12–4.48). Those who were exposed to any diazinon but did not carry the homozygous variant genotype exhibited little to no increased risk of PD (OR=1.18, CI=0.83–1.68). For those highly exposed to diazinon, the authors found an even larger increase in risk for MM carriers (zero/low versus high: OR=5.30, CI=1.71-16.4), and strong interaction on the multiplicative scale (OR_{interaction}=4.59, CI = 1.37–15.4). The authors did not find any increase in PD risk with parathion exposure, even among those who were PON1-55 MM genotype carriers.

Lee et al. (2013) found increased risk of PD among PON1-55 MM carriers with exposure to chlorpyrifos (aOR=2.45, CI=1.24-4.83); no statistically significant interaction was observed between...
exposure to diazinon and parathion (for diazinon, aOR=1.84, CI=0.97-3.47; for parathion, aRO=1.78, CI=0.89-3.60). The risk of PD among PON1-192QQ carriers with exposure to chlorpyrifos was also increased (aOR=1.95, CI=1.13-3.37) and again, it was not statistically significant for exposure to diazinon (aOR=1.53, CI=0.90-2.61) and parathion (aOR=1.65, CI=0.95-2.89). The highest risk of PD was found among those with PON1-55 MM-192QQ and exposure to chlorpyrifos (OR=3.28, CI=1.02-10.58).

Quaternary Ammonium

The primary pesticide in this category includes paraquat. Of the 3 studies analyzing an association between quaternary ammonium pesticides and PD development with possible genetic interactions, 2 provided statistically significant evidence to support an interaction effect between quaternary ammonium exposure and genes in modulating the risk of PD. These studies looked at DAT and GSTT1 genotypes. There was an interaction effect with maneb and paraquat exposure and PD (OR=4.53) with individuals who had two or more DAT susceptibility genes compared to those with zero susceptibility genes. There was also increased risk of PD among those highly exposed to paraquat with a GSTT1 homozygous deletion (OR=11.1). One study did not find an interaction with SNCA and it was unknown if there was an association between PD and paraquat exposure without SNCA.

Positive association with interaction

The studies which found evidence to support a gene-environment interaction affecting the association between quaternary ammonium pesticide exposure and risk of PD are summarized here.

Ritz et al. (2009) conducted a population-based case-control study of 324 incident PD patients and 334 population controls. Subjects were recruited in three California counties. Cases were recruited by referral and confirmed by UCLA movement disorder specialists. Exposure to pesticides was assessed using telephone interview and GIS modeling. Participants also provided blood or buccal samples for genetic analyses. The study looked at the association between exposure to paraquat and maneb and PD alone, as well as the gene-environment hypothesis that dopamine transporter (DAT) genetic variants interact with pesticide exposure to increase the risk of PD. High residential exposures to both paraquat and maneb between 1974 and 1999 increased the risk of PD more than two-fold (aOR=2.32, CI=1.23–4.40), and occupational exposure increased the risk of PD by approximately 50% in males (aOR=1.56, CI=0.95–2.56), but the latter association was statistically non-significant. The authors found that high exposure to maneb and paraquat increased PD risk almost 3-fold but not significantly, in subjects who carried one DAT susceptibility allele (OR=2.99, CI=0.88-10.21) and as much as a 4.5-fold in carriers of two or more susceptibility alleles (OR=4.53, 95% CI=1.70–12.1). In subjects with little or no residential
exposure to these pesticides, there was no increase in risk with susceptibility allele carrier status or increasing number of susceptibility alleles.

Goldman and Samuel (2012) recruited participants from the Agricultural Health Study (prospective study of licensed pesticide applicators, mostly farmers) and their spouses for the Farming and Movement Evaluation case-control study. PD risk was the outcome measured. Subjects from Iowa and North Carolina with PD (n=87) and 343 matched controls were recruited. Paraquat use was determined by interview. PD diagnosis was confirmed by in-person examination. Subjects were genotyped for homozygous deletion of GSTM1 and GSTT1. These are glutathione transferase genes, which detoxify a wide range of xenobiotic compounds. The hypothesis was that a deficient enzyme might enhance the neurotoxicity of paraquat. Analyses were restricted to men because no women used paraquat. The general risk of PD (without reference to genotype) for those who ever used paraquat was statistically significantly increased (aOR=2.6, CI=1.3-5.0) with adjustment for age, sex, state (Iowa or North Carolina), and smoking status. Men with functional GSTT1 and paraquat use had a statistically insignificant PD risk (aOR=1.5, CI=0.6-3.6); homozygous deletion of GSTT1 (GSTT1*0) and paraquat exposure had an OR of 11.1 (CI=3.0-44.6, p=0.027). PD risk with GSTT1*0 and no paraquat exposure was not significant: aOR=1.1 (CI=0.4-2.4). Greater total years of paraquat use was strongly associated with increased risk of PD in those with GSTT1*0 (p trend= 0.001).

Unknown association without interaction

The studies which found evidence to support a genetic interaction with the risk of PD, but did not specifically address the contribution of pesticide exposure to PD risk alone are summarized here.

Gatto *et al.* (2010) used a population-based case-control study to examine if the risk of PD depended on the combined presence of α-synuclein (SNCA) gene variations and pesticide exposures. Abnormal aggregation of the α-synuclein protein, a major component of Lewy bodies and a hallmark of PD, is believed to be important in the molecular pathogenesis of the disease. Several single nucleotide polymorphisms (SNPs) and haplotypes in the SNCA promoter have also been shown to be associated with the risk of sporadic PD, and increasing REP1 length is associated with an increased risk of PD, as well as possibly with a decrease in age of PD onset. PD cases (n=333) were recruited from three rural California counties and matched to 336 population controls from the same area. Cases were confirmed by University of California, Los Angeles (UCLA) movement disorder specialists. This study was unique in that it estimated long-term pesticide exposure from agricultural applications in rural counties of California’s Central Valley using a geographic information system approach that integrates unique state-mandated pesticide use reports (PUR) and land use data. The authors summed intensity of pesticide
applications (pounds per acre applied within a 500-meter buffer zone) at residences across a 26-year period (1974 to 1979) to calculate the cumulative total intensity of ambient paraquat exposure for each subject. Exposure to paraquat at or above the median value in the control population was considered high and below the median (including no exposure) was considered low/no exposure. There were no statistically significant findings regarding the interaction between pesticide exposure and SNCA variations on the risk of PD. However, there were some positive, non-significant associations. For example, among those who were homozygous or heterozygous for the REP1 263 genotype and high paraquat exposure, the aOR=1.45 (CI=0.59–3.59) compared to those without low or no paraquat exposure, as adjusted age, sex, education, race, smoking status, and family history of PD (positive/negative in a first-degree relative).

Carbamate or Dithiocarbamate
This type includes the carbamate pesticide Methomyl and dithiocarbamate pesticides maneb, zineb, ziram, mancozeb. There was one study which examined the exposure of maneb and paraquat among individuals with the DAT susceptibility gene. The risk for PD increased with exposure to these two pesticides among individuals with two or more DAT susceptibility genes (OR=4.53).

Positive association and/or interaction
There was one study that found an evidence to support a gene-environment interaction affecting the association between dithiocarbamates pesticide exposure and risk of PD and it is summarized here.

Ritz et al. (2009) study, which was described in the previous section, addressed the combination of maneb and paraquat exposure, with a resulting increased OR among those carrying DAT susceptibility alleles. High exposure to maneb and paraquat in carriers of one susceptibility allele increased PD risk three-fold (OR=2.99, CI=0.88-10.2), but this was not statistically significant. In carriers of two or more alleles, the PD risk increased four-fold (OR=4.53, CI=1.70-12.1). Similar results were obtained for occupational exposure to maneb and paraquat.

Brown TP, Rumsby PC, Capleton AC et al. 2006. Pesticides and Parkinson's disease--is there a link? Environmental Health Perspectives 114(2):156-64.

Data Abstraction Form

Tracking Information:
Reviewer initials: __________________ Article Number: __________________

Primary author last name: ______________
Year article/report published: ______________

Title of Article/Report:

Publication details [Journal or report name, volume (issue), pages]:

Study Type (check one):
__Published peer-reviewed journal article
__Government report
__Public health authority
__Other (describe)

Report Details
Brief description, including the study population (race/ethnicity, age, sex) and outcome measures: (i.e. cancer)

Measure of Association (i.e. odds ratios, rate ratio)

Statistically Significant Finding? (cite p-value or confidence intervals for controls versus exposed, i.e.).

Study Recommendations (if any)?

Appendix I: Pesticide active ingredients looked up for Pesticides and Parkinson's Committee public group. Sources include NSPIRS registration data, EPA registration information, Agency for Toxic Substances and Disease Registry, and the Compendium of Pesticide Common Names.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Chemical Class</th>
<th>Registration Status</th>
<th>Some Potential NM Sites Include</th>
<th>Other Sites Include</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maneb</td>
<td>Fungicide</td>
<td>Dithiocarbamate</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>Last uses CANCELED in 2010</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>Insecticide</td>
<td>Cyclodiene</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>Most uses CANCELED in 1974; final cancelation in 1999</td>
</tr>
<tr>
<td>Endrin</td>
<td>Insecticide</td>
<td>Cyclodiene</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>Most uses CANCELED in 1986; final cancelation in 1991</td>
</tr>
<tr>
<td>Aldrin</td>
<td>Insecticide</td>
<td>Cyclodiene</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>CANCELED by USDA in 1970; EPA lifted in 1972 for limited use; final use canceled 1987</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>Insecticide</td>
<td>Cyclodiene</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>CANCELED by USDA in 1970; EPA lifted in 1972 for limited use; final use canceled 1987</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Chemical Class</td>
<td>Registration Status</td>
<td>Some Potential NM Sites Include</td>
<td>Other Sites Include</td>
<td>Notes</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Benomyl</td>
<td>Fungicide</td>
<td>Benzimidazole fungicide; carbamate acaricide</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>CANCELED in '80s-'90s</td>
</tr>
<tr>
<td>Zineb</td>
<td>Fungicide</td>
<td>Dithiocarbamate</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>CANCELED in 1991</td>
</tr>
<tr>
<td>Lindane</td>
<td>Insecticide</td>
<td>Organochlorine</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>Most uses CANCELED by 1999; all uses canceled by 2006. Pharmaceutical use remains.</td>
</tr>
<tr>
<td>Ziram</td>
<td>Fungicide</td>
<td>Dithiocarbamate</td>
<td>Active</td>
<td>Pecans, ornamentals</td>
<td>Berries, many fruits, flowers</td>
<td>Fungal diseases rare in NM</td>
</tr>
<tr>
<td>Rotenone</td>
<td>Piscicide, insecticide</td>
<td>Botanical</td>
<td>Active Restricted 2 piscicides registered in 2013</td>
<td>Aquatic sites for control of undesirable fish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propargite</td>
<td>Miticide</td>
<td>Sulfite</td>
<td>Active</td>
<td>Potatoes, corn, beans, peanuts, cotton, alfalfa</td>
<td>Berries, citrus, mint, hops, carrots, many fruits</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Chemical Class</td>
<td>Registration Status</td>
<td>Some Potential NM Sites Include</td>
<td>Other Sites Include</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Diazinon</td>
<td>Insecticide</td>
<td>Organophosphorus</td>
<td>Active Many are restricted 9 registered in 2013</td>
<td>Lettuce, onions, nursery plants, dairy cattle, beef cattle</td>
<td>Grapes, many veggies, berries, melons, fruits</td>
<td></td>
</tr>
<tr>
<td>Mancozeb</td>
<td>Fungicide</td>
<td>Dithiocarbamate</td>
<td>Active Not restricted 44 registered in 2013</td>
<td>Potatoes, onions</td>
<td>Melons, cucurbits, mangos, apples, citrus, cranberries</td>
<td>Fungal diseases rare in NM</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>Insecticide/miticide</td>
<td>Cyclodiene</td>
<td>Active Restricted 3 registered in 2013</td>
<td>Pecans, cotton, wheat, ornamentals 3 registered in 2013</td>
<td>Cucurbits, many vegetables, peaches, cherries, tobacco</td>
<td></td>
</tr>
<tr>
<td>Permethrin</td>
<td>Insecticide/miticide</td>
<td>Pyrethroid</td>
<td>Active Most are not restricted 556 registered in 2013</td>
<td>Many sites; many are nonagricultural. Homes, yards, garden dusts, dogs & cats, buildings, lettuce, pecans, many vegetables, ornamentals, etc.</td>
<td>Berries, many fruits, flowers, many vegetables, nuts, etc.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Chemical Class</td>
<td>Registration Status</td>
<td>Some Potential NM Sites Include</td>
<td>Other Sites Include</td>
<td>Notes</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>--------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>Insecticide/miticide</td>
<td>Pyrethroid</td>
<td>Active</td>
<td>Many sites; many are nonagricultural. Foggers, roach sprays, pecans, onions, cotton, lettuce</td>
<td>Other greens, broccoli, cauliflower, garlic</td>
<td></td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>Insecticide/miticide</td>
<td>Organophosphorus</td>
<td>Active</td>
<td>Alfalfa, cotton, onions, pecan, cattle, wood products, industrial sites, ant dens, vector control</td>
<td>Citrus, soybeans, tobacco, many fruits, many vegetables</td>
<td></td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide/miticide</td>
<td>Carbamate</td>
<td>Active</td>
<td>Many food crops, restaurants, sod, food processing plants</td>
<td>Fruits, vegetables, grains, tobacco, mint, barns</td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td>Herbicide</td>
<td>Phenoxyacetic</td>
<td>Active</td>
<td>Many agricultural & nonagricultural sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Chemical Class</td>
<td>Registration Status</td>
<td>Some Potential NM Sites Include</td>
<td>Other Sites Include</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Paraquat</td>
<td>Herbicide, desiccant</td>
<td>Quaternary ammonium</td>
<td>Active Restricted 12 registered in 2013</td>
<td>Many agricultural sites. Pecans, alfalfa, cotton, peanuts, grapes, lettuce</td>
<td>Berries, citrus, greens, melons, many fruits, many vegetables, soybeans, tobacco, grains, ornamentals, sod, conifers</td>
<td></td>
</tr>
</tbody>
</table>
Appendix II: Results of PubMed Search on July 2nd, 2013

((Parkinson's Disease) AND pesticide) OR insecticide, herbicide, rodenticide, fungicide

Items 1 - 200 of 1547 (Display the 200 citations in PubMed)

1. The Parkinson's disease protein DJ-1 binds metals and protects against metal induced cytotoxicity.
 PMID: 23792957 [PubMed - as supplied by publisher] Free Article
 Related citations

2. Rotenone induces neuronal death by microglial phagocytosis of neurons.
 Emmrich JV, Hornik TC, Neher JJ, Brown GC.
 PMID: 23789887 [PubMed - as supplied by publisher]
 Related citations

 Caito SW, Valentine WM, Aschner M.
 PMID: 23786526 [PubMed - as supplied by publisher]
 Related citations

 Allen EM, Florang VR, Davenport LL, Jinsmaa Y, Doorn JA.
 PMID: 23763672 [PubMed - as supplied by publisher]
 Related citations

5. Involvement of NF Kappa B in Potentiated Effect of Mn-containing Dithiocarbamates on MPP+ Induced Cell Death.
 Williams CA, Lin Y, Maynard A, Cheng SY.
 PMID: 23744253 [PubMed - as supplied by publisher]
 Related citations

6. Exposure to pesticides or solvents and risk of Parkinson disease.
 Pezzoli G, Cereda E.
7. **Differential Effects of Methyl-4-Phenylpyridinium Ion, Rotenone, and Paraquat on Differentiated SH-SY5Y Cells.**
 Martins JB, Bastos Mde L, Carvalho F, Capela JP.
 PMID: 23713084 [PubMed - in process]
 Related citations

8. **Rotenone Could Activate Microglia Through NFκB Associated Pathway.**
 Yuan YH, Sun JD, Wu MM, Hu JF, Peng SY, Chen NH.
 PMID: 23645222 [PubMed - in process]
 Related citations

9. **Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson's disease.**
 St Laurent R, O'Brien LM, Ahmad ST.
 PMID: 23623990 [PubMed - in process]
 Related citations

10. **Functional paraoxonase 1 variants modify the risk of Parkinson's disease due to organophosphate exposure.**
 Lee PC, Rhodes SL, Sinsheimer JS, Bronstein J, Ritz B.
 PMID: 23602893 [PubMed - in process]
 Related citations

11. **Construction of photoenergetic mitochondria in cultured mammalian cells.**
 Hara KY, Wada T, Kino K, Asahi T, Sawamura N.
 PMID: 23567447 [PubMed - in process]
 Related citations

12. **Neonatal exposure to lipopolysaccharide enhances accumulation of α-synuclein aggregation and dopamine transporter protein expression in the substantia nigra in responses to rotenone challenge in later life.**
 Toxicology. 2013 Jun 7;308:96-103. doi: 10.1016/j.tox.2013.03.014. Epub 2013 Apr 5.
 PMID: 23567316 [PubMed - in process]
13. [Neurotoxicity of pesticides: its relationship with neurodegenerative diseases].
 Thany SH, Reynier P, Lenaers G.
 PMID: 23544381 [PubMed - indexed for MEDLINE]

14. Specific Pesticide-Dependent Increases in α-Synuclein Levels in Human Neuroblastoma (SH-SY5Y) and Melanoma (SK-MEL-2) Cell Lines.
 Chorfa A, Bétemps D, Morignat E, Lazizzera C, Hogeveen K, Andrieu T, Baron T.
 PMID: 23535362 [PubMed - in process]

15. Genetic susceptibility loci, environmental exposures, and Parkinson’s disease: a case-control study of gene-environment interactions.
 PMID: 23507417 [PubMed - in process]

 Bernstein AI, O'Malley KL.
 PMID: 23500530 [PubMed - indexed for MEDLINE]

17. PACAP deficiency sensitizes nigrostriatal dopaminergic neurons to paraquat-induced damage and modulates central and peripheral inflammatory activation in mice.
 PMID: 23500093 [PubMed - in process]

18. Chronic exposure to rotenone, a dopaminergic toxin, results in peripheral neuropathy associated with dopaminergic damage.
 Binienda ZK, Sarkar S, Mohammed-Saeed L, Gough B, Beaudoin MA, Ali SF, Paule MG, Imam SZ.

Related citations

 Ryu HW, Oh WK, Jang IS, Park J.
 PMID: 23485458 [PubMed - indexed for MEDLINE]

Related citations

 CNS Neurol Disord Drug Targets. 2013 Feb 27. [Epub ahead of print]
 PMID: 23469842 [PubMed - as supplied by publisher]

Related citations

 Dev Neurosci. 2013 Feb 22. [Epub ahead of print]
 PMID: 23446007 [PubMed - as supplied by publisher]

Related citations

 Mostafalou S, Abdollahi M.
 PMID: 23402800 [PubMed - indexed for MEDLINE]

Related citations

23. [Protective effect of six Kaixin San formulas on nerve cells injured by different materials].
 Zhao HX, Zhou XJ, Hu Y, Dong XZ, Cao Y, Liu P.
 PMID: 23373224 [PubMed - indexed for MEDLINE]

Related citations

 Taetzsch T, Block ML.
 PMID: 23349115 [PubMed - in process]
Related citations

25. [Parkinson's disease due to laboral exposition to paraquat].
 León-Verastegui AG.
 PMID: 23331754 [PubMed - indexed for MEDLINE]
 Related citations

 Costa AC, Loh SH, Martins LM.
 Related citations

27. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects.
 Casida JE, Durkin KA.
 PMID: 23317040 [PubMed - indexed for MEDLINE]
 Related citations

28. The interplay between environmental and genetic factors in Parkinson's disease susceptibility: the evidence for pesticides.
 Dardiotis E, Xiromerisiou G, Hadjichristodoulou C, Tsatsakis AM, Wilks MF, Hadjigeorgiou GM.
 PMID: 23295711 [PubMed - in process]
 Related citations

29. The behavioural and neuropathological impact of intranigral AAV-α-synuclein is exacerbated by systemic infusion of the Parkinson's disease-associated pesticide, rotenone, in rats.
 Mulcahy P, O'Doherty A, Paucard A, O'Brien T, Kirik D, Dowd E.
 PMID: 23295396 [PubMed - in process]
 Related citations

30. Astaxanthin protects against MPP(+) -induced oxidative stress in PC12 cells via the HO-1/NOX2 axis.
 Ye Q, Huang B, Zhang X, Zhu Y, Chen X.
 Related citations

31. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease.

Related citations

32. **Rotenone inhibits autophagic flux prior to inducing cell death.**

Related citations

33. **Piracetam and vinpocetine ameliorate rotenone-induced Parkinsonism in rats.**

Related citations

34. **The role of pesticide exposure in the genesis of Parkinson's disease: epidemiological studies and experimental data.**

Related citations

35. **Environmental toxicants as extrinsic epigenetic factors for Parkinsonism: studies employing transgenic C. elegans model.**

Related citations

36. **Elicitation of dopaminergic features of Parkinson's disease in C. elegans by monocrotophos, an organophosphorous insecticide.**

Related citations

37. **Effect of various classes of pesticides on expression of stress genes in transgenic C. elegans model of Parkinson's disease.**
Jadiya P, Mir SS, Nazir A.
CNS Neurol Disord Drug Targets. 2012 Dec;11(8):1001-5.
PMID: 23244415 [PubMed - in process]

Related citations

38. The relative sensitivity of macrophyte and algal species to herbicides and fungicides: an analysis using species sensitivity distributions.
Giddings JM, Arts G, Hommen U.
PMID: 23229339 [PubMed - in process]

Related citations

39. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells.
Lopert P, Day BJ, Patel M.

Related citations

40. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice.

Related citations

41. Colchicine protects dopaminergic neurons in a rat model of Parkinson's disease.
CNS Neurol Disord Drug Targets. 2012 Nov 1;11(7):836-43.
PMID: 23198691 [PubMed - indexed for MEDLINE]

Related citations

42. Expression of human E46K-mutated α-synuclein in BAC-transgenic rats replicates early-stage Parkinson's disease features and enhances vulnerability to mitochondrial impairment.
Cannon JR, Geggman KD, Tapias V, Sew T, Dail MK, Li C, Greenamyre JT.
PMID: 23153578 [PubMed - indexed for MEDLINE]

Related citations

43. p10, the N-terminal domain of p35, protects against CDK5/p25-induced neurotoxicity.
Zhang L, Liu W, Szumlinski KK, Lew J.
44. **Traumatic brain injury, paraquat exposure, and their relationship to Parkinson disease.**
Lee PC, Bordelon Y, Bronstein J, Ritz B.
PMID: 23150532 [PubMed - indexed for MEDLINE]
Related citations

45. **Deletion in exon 5 of the SNCA gene and exposure to rotenone leads to oligomerization of α-synuclein and toxicity to PC12 cells.**
Ma KL, Song LK, Long WA, Yuan YH, Zhang Y, Song XY, Niu F, Han N, Chen NH.
PMID: 23128054 [PubMed - indexed for MEDLINE]
Related citations

46. **Heterozygous mutations in the FGF8, SHH and nodal/transforming growth factor beta pathways do not confer increased dopaminergic neuron vulnerability--a zebrafish study.**
Lo C, Flinn LJ, Bandmann O.
PMID: 23123778 [PubMed - indexed for MEDLINE]
Related citations

47. **Functional GPR37 trafficking protects against toxicity induced by 6-OHDA, MPP+ or rotenone in a catecholaminergic cell line.**
Lundius EG, Stroth N, Vukojević V, Terenius L, Svenningsson P.
PMID: 23121049 [PubMed - indexed for MEDLINE]
Related citations

48. **ω-3 fatty acid eicosapentaenoic acid attenuates MPP+-induced neurodegeneration in fully differentiated human SH-SY5Y and primary mesencephalic cells.**
Luchtman DW, Meng Q, Wang X, Shao D, Song C.
PMID: 23106698 [PubMed - indexed for MEDLINE]
Related citations

49. **Parkinson's disease: evidence for environmental risk factors.**
Kieburzt K, Wunderle KB.
PMID: 23097348 [PubMed - in process]
Related citations
50. **Occupational pesticide exposure and screening tests for neurodegenerative disease among an elderly population in Costa Rica.**
Steenland K, Wesseling C, Román N, Quirós I, Juncos JL.

Related citations

51. **Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson's disease.**
Tönges L, Frank T, Tatenhorst L, Saal KA, Koch JC, Szego ÉM, Bähr M, Weishaupt JH, Lingor P.

Related citations

52. **Meta-analysis of early nonmotor features and risk factors for Parkinson disease.**

Related citations

53. **DJ-1 expression modulates astrocyte-mediated protection against neuronal oxidative stress.**
Mullett SJ, Di Maio R, Greenamyre JT, Hinkle DA.
PMID: 23065353 [PubMed - in process]

Related citations

54. **Environmental-genetic interactions in the pathogenesis of Parkinson's disease.**
Tsuboi Y.

Related citations

55. **Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: implication in autosomal recessive juvenile Parkinsonism.**
Bonilla-Ramirez L, Jimenez-Del-Rio M, Velez-Pardo C.
PMID: 23046578 [PubMed - indexed for MEDLINE]

Related citations

56. **Genetic modification of the association of paraquat and Parkinson's disease.**

Related citations

57. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease.

Related citations

58. Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson's disease.

Related citations

59. Dysregulated expression of secretogranin III is involved in neurotoxin-induced dopaminergic neuron apoptosis.

Related citations

Related citations

61. Controlled release of rasagiline mesylate promotes neuroprotection in a rotenone-induced advanced model of Parkinson's disease.
62. [Chronic central nervous system effects of pesticides: state-of-the-art].
PMID: 22981160 [PubMed - indexed for MEDLINE]

Kabiraj P, Pal R, Varela-Ramirez A, Miranda M, Narayan M.
PMID: 22974977 [PubMed - indexed for MEDLINE]

64. MDR1 C3435T polymorphism and interaction with environmental factors in risk of Parkinson's disease: a case-control study in Japan.

65. Transcriptome analysis of a rotenone model of parkinsonism reveals complex I-tied and -untied toxicity mechanisms common to neurodegenerative diseases.
Cabeza-Arvelaiz Y, Schiestl RH.

66. Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death.
Giordano S, Lee J, Darley-Usmar VM, Zhang J.

67. Central nervous system damage due to acute paraquat poisoning: a neuroimaging study with 3.0 T MRI.
27. PMID: 22947519 [PubMed - indexed for MEDLINE]
Related citations

68. A current review of cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neurodegeneration.
Singh AK, Tiwari MN, Prakash O, Singh MP.
Related citations

69. Glycogen synthase kinase-3β activation mediates rotenone-induced cytotoxicity with the involvement of microtubule destabilization.
Hongo H, Kihara T, Kume T, Izumi Y, Niidome T, Sugimoto H, Akaike A.
PMID: 22922102 [PubMed - indexed for MEDLINE]
Related citations

70. Quercetin and sesamin protect dopaminergic cells from MPP+-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system.
Bournival J, Plouffe M, Renaud J, Provencher C, Martinoli MG.
Related citations

Janda E, Isidoro C, Carresi C, Mollace V.
PMID: 22899187 [PubMed - in process]
Related citations

72. DJ-1 protects dopaminergic neurons against rotenone-induced apoptosis by enhancing ERK-dependent mitophagy.
Gao H, Yang W, Qi Z, Lu L, Duan C, Zhao C, Yang H.
PMID: 22898350 [PubMed - indexed for MEDLINE]
Related citations

73. Lipid-like components released from degenerating dopaminergic neurons trigger the dynamic migration of microglia.
Kim H, Park JH, Kim K.
Biochem Biophys Res Commun. 2012 Sep 14;426(1):18-25. doi:
74. Activation of transcription factor MEF2D by bis(3)-cognitin protects dopaminergic neurons and ameliorates Parkinsonian motor defects.
PMID: 22891246 [PubMed - indexed for MEDLINE]
Related citations

75. ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons.
Joselin AP, Hewitt SJ, Callaghan SM, Kim RH, Chung YH, Mak TW, Shen J, Slack RS, Park DS.
PMID: 22872702 [PubMed - indexed for MEDLINE]
Related citations

76. 3-(Fur-2-yl)-10-(2-phenylethyl)-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one, a novel adenosine receptor antagonist with A(2A)-mediated neuroprotective effects.
Scatena A, Fornai F, Trincavelli ML, Taliani S, Daniele S, Pugliesi I, Cosconati S, Martini C, Da Settimo F.
Related citations

77. 5'-Aza-dC sensitizes paraquat toxic effects on PC12 cell.
Kong M, Ba M, Liang H, Ma L, Yu Q, Yu T, Wang Y.
PMID: 22796470 [PubMed - indexed for MEDLINE]
Related citations

78. Whole genome expression profile in neuroblastoma cells exposed to 1-methyl-4-phenylpyridine.
Mazzio E, Soliman KF.
PMID: 22776087 [PubMed - indexed for MEDLINE]
Related citations

Related citations

80. **IL6 protects MN9D cells and midbrain dopaminergic neurons from MPP+-induced neurodegeneration.**
 PMID: 22772723 [PubMed - indexed for MEDLINE]

Related citations

81. **Clavulanic acid inhibits MPP+-induced ROS generation and subsequent loss of dopaminergic cells.**
 PMID: 22750587 [PubMed - indexed for MEDLINE]

Related citations

82. **Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway.**

Related citations

83. **Induction of apoptotic erythrocyte death by rotenone.**
 PMID: 22727881 [PubMed - indexed for MEDLINE]

Related citations

84. **Protective role of glutathione reductase in paraquat induced neurotoxicity.**
 PMID: 22721943 [PubMed - indexed for MEDLINE]

Related citations

85. **Regenerative effects of umbilical cord matrix cells (UCMCs) in a rodent model of rotenone neurotoxicity.**
 Salama M, Eldakroory SA, Eltantawy D, Ghanem AA, Elghaffar HA, Elhusseiny M, Elhak
SG.
PMID: 22717662 [PubMed - indexed for MEDLINE]
Related citations
86. Rotenone-induced parkinsonism elicits behavioral impairments and differential expression of parkin, heat shock proteins and caspases in the rat.
Sonia Angeline M, Chaterjee P, Anand K, Ambasta RK, Kumar P.
PMID: 22710069 [PubMed - indexed for MEDLINE]
Related citations
87. Alterations in bioenergetic function induced by Parkinson's disease mimetic compounds: lack of correlation with superoxide generation.
Dranka BP, Zielonka J, Kanthasamy AG, Kalyanaraman B.
PMID: 22708893 [PubMed - indexed for MEDLINE]
Related citations
88. Association of a protective paraoxonase 1 (PON1) polymorphism in Parkinson's disease.
PMID: 22704918 [PubMed - indexed for MEDLINE]
Related citations
89. Parkinson disease and Alzheimer disease: environmental risk factors.
Campdelacreu J.
PMID: 22703631 [PubMed - as supplied by publisher] Free Article
Related citations
90. Occupational exposure to pesticides and Parkinson's disease: a systematic review and meta-analysis of cohort studies.
Van Maele-Fabry G, Hoet P, Vilain F, Lison D.
PMID: 22698719 [PubMed - indexed for MEDLINE]
Related citations
91. Risk factors for Parkinson's disease may differ in men and women: an exploratory study.

92. **Salidroside protects PC12 cells from MPP⁺-induced apoptosis via activation of the PI3K/Akt pathway.**
PMID: 22664423 [PubMed - indexed for MEDLINE]

93. **Pesticide exposure and Parkinson's disease: epidemiological evidence of association.**
PMID: 22627180 [PubMed - indexed for MEDLINE]

94. **Urate and its transgenic depletion modulate neuronal vulnerability in a cellular model of Parkinson's disease.**

95. **Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models.**
PMID: 22574684 [PubMed - indexed for MEDLINE]

96. **Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson's disease.**

97. **Viral-toxin interactions and Parkinson's disease: poly I:C priming enhanced the neurodegenerative effects of paraquat.**

Related citations

98. The caspase 6 derived N-terminal fragment of DJ-1 promotes apoptosis via increased ROS production.

Related citations

Yong-Kee CJ, Warre R, Monnier PP, Lozano AM, Nash JE.

Related citations

100. Glyphosate induced cell death through apoptotic and autophagic mechanisms.
PMID: 22504123 [PubMed - indexed for MEDLINE]

Related citations

101. [Adenovirus vector mediated human 14-3-3 γ gene transfer protects dopaminergic cells against rotenone-induced injury].
PMID: 22490660 [PubMed - indexed for MEDLINE]

Related citations

102. PEP-1-heat shock protein 27 protects from neuronal damage in cells and in a Parkinson's disease mouse model.
PMID: 22429328 [PubMed - indexed for MEDLINE]

Related citations

103. The decrease of dopamine D₃/D₄ receptor densities in the putamen and nucleus caudatus goes parallel with maintained levels of CB₁ cannabinoid receptors in Parkinson's disease: a
preliminary autoradiographic study with the selective dopamine D₂/D₃ antagonist [³H]raclopride and the novel CB₁ inverse agonist [¹²⁵I]SD7015.

Farkas S, Nagy K, Jia Z, Harkany T, Palkovits M, Donohou SR, Pike VW, Halldin C, Máthé D, Csiba L, Gulyás B.

PMID: 22421165 [PubMed - indexed for MEDLINE]

Related citations
Ali SF, Binienda ZK, Imam SZ.

Related citations
105. Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results.
van der Mark M, Brouwer M, Kromhout H, Nijsse P, Huss A, Vermeulen R.

Related citations
106. Use of PC12 cells and rat superior cervical ganglion sympathetic neurons as models for neuroprotective assays relevant to Parkinson's disease.
Grau CM, Greene LA.

Related citations
107. Decrease in nicotinamide adenine dinucleotide dehydrogenase is related to skin pigmentation.
Nakama M, Murakami Y, Tanaka H, Nakata S.
PMID: 22360328 [PubMed - indexed for MEDLINE]

Related citations
108. Chiral pesticides: identification, description, and environmental implications.
Ulrich EM, Morrison CN, Goldsmith MR, Foreman WT.
PMID: 22350557 [PubMed - indexed for MEDLINE]

Related citations
109. Emerging neurotoxic mechanisms in environmental factors-induced neurodegeneration.
PMID: 22342404 [PubMed - indexed for MEDLINE]
Related citations

10. Resveratrol potentiates cytochrome P450 2 d22-mediated neuroprotection in maneb- and paraquat-induced parkinsonism in the mouse.
Srivastava G, Dixit A, Yadav S, Patel DK, Prakash O, Singh MP.
PMID: 22334051 [PubMed - indexed for MEDLINE]
Related citations

11. Peripheral inflammation increases the deleterious effect of CNS inflammation on the nigrostriatal dopaminergic system.
PMID: 22330755 [PubMed - indexed for MEDLINE]
Related citations

12. Circadian dysfunction in a rotenone-induced parkinsonian rodent model.
PMID: 22324553 [PubMed - indexed for MEDLINE]
Related citations

13. The mitochondrial chaperone protein TRAP1 mitigates α-Synuclein toxicity.
Related citations

14. WldS but not Nmnat1 protects dopaminergic neurites from MPP+ neurotoxicity.
Antenor-Dorsey JA, O'Malley KL.
Related citations

15. Industrial toxicants and Parkinson's disease.

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations
121. **Matrix metalloproteinase-3 is activated by HtrA2/Omi in dopaminergic cells: relevance to Parkinson's disease.**
Shin EJ, Kim EM, Lee JA, Rhim H, Hwang O.
PMID: 22265821 [PubMed - indexed for MEDLINE]
Related citations

122. **Reduction of mitoferrin results in abnormal development and extended lifespan in Caenorhabditis elegans.**
Related citations

123. **Animal models of Parkinson's disease.**
Blandini F, Armentero MT.
PMID: 22251459 [PubMed - indexed for MEDLINE]
Related citations

124. **Minocycline prevents paraquat-induced cell death through attenuating endoplasmic reticulum stress and mitochondrial dysfunction.**
Huang CL, Lee YC, Yang YC, Kuo TY, Huang NK.
PMID: 22245251 [PubMed - indexed for MEDLINE]
Related citations

125. **Involvement of NADPH oxidase and glutathione in zinc-induced dopaminergic neurodegeneration in rats: similarity with paraquat neurotoxicity.**
Kumar A, Singh BK, Ahmad I, Shukla S, Patel DK, Srivastava G, Kumar V, Pandey HP, Singh C.
PMID: 22244881 [PubMed - indexed for MEDLINE]
Related citations

126. **Animal models of the non-motor features of Parkinson's disease.**
McDowell K, Chesselet MF.
127. Δ⁹-tetrahydrocannabinol (Δ⁹-THC) exerts a direct neuroprotective effect in a human cell culture model of Parkinson's disease.
Carroll CB, Zeissler ML, Hanemann CO, Zajicek JP.

128. A guide to neurotoxic animal models of Parkinson's disease.
Tieu K.

129. Glutathione s-transferase omega 1 activity is sufficient to suppress neurodegeneration in a Drosophila model of Parkinson disease.

130. Biomonitoring and biomarkers of organophosphate pesticides exposure - state of the art.
Kapka-Skrzypczak L, Cyranka M, Skrzypczak M, Kruszewski M.

131. Differential effects of dopaminergic neurotoxins on DNA cleavage.
Tharakar B, Dhanasekaran M, Manyam BV.
PMID: 22213117 [PubMed - indexed for MEDLINE]
Related citations

132. Alteration of GSK-3β in the hippocampus and other brain structures after chronic paraquat administration in rats.
Songin M, Ossowska K, Kuter K, Strosznajder JB.
PMID: 22212922 [PubMed - indexed for MEDLINE] Related citations
133. Role of secondary mediators in caffeine-mediated neuroprotection in maneb- and paraquat-induced Parkinson's disease phenotype in the mouse.
Yadav S, Gupta SP, Srivastava G, Srivastava PK, Singh MP.
PMID: 22201039 [PubMed - indexed for MEDLINE]
Related citations

134. Redox modification of Akt mediated by the dopaminergic neurotoxin MPTP, in mouse midbrain, leads to down-regulation of pAkt.
Durgadoss L, Nidadavolu P, Valli RK, Saeed U, Mishra M, Seth P, Ravindranath V.
Related citations

135. Development and characterisation of a novel rat model of Parkinson's disease induced by sequential intranigral administration of AAV-α-synuclein and the pesticide, rotenone.
Mulcahy P, O'Doherty A, Paucard A, O'Brien T, Kirik D, Dowd E.
PMID: 22198020 [PubMed - indexed for MEDLINE]
Related citations

136. Organochlorine insecticides lindane and dieldrin and their binary mixture disturb calcium homeostasis in dopaminergic PC12 cells.
Heusinkveld HJ, Westerink RH.
PMID: 22191981 [PubMed - indexed for MEDLINE]
Related citations

137. Animal models of Parkinson's disease.
Jackson-Lewis V, Blesa J, Przedborski S.
PMID: 22166429 [PubMed - indexed for MEDLINE]
Related citations

138. Oxicam structure in non-steroidal anti-inflammatory drugs is essential to exhibit Akt-mediated neuroprotection against 1-methyl-4-phenyl pyridinium-induced cytotoxicity.
PMID: 22182582 [PubMed - indexed for MEDLINE]
Related citations

139. **Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3.**
Rappold PM, Cui M, Chesser AS, Tibbett J, Grima JC, Duan L, Sen N, Javitch JA, Tieu K.

Related citations

140. **A national registry to determine the distribution and prevalence of Parkinson's disease in Thailand: implications of urbanization and pesticides as risk factors for Parkinson's disease.**
PMID: 22133707 [PubMed - indexed for MEDLINE]

Related citations

141. **Role of epigenetics in Alzheimer's and Parkinson's disease.**
Kwok JB.
PMID: 22122050 [PubMed - indexed for MEDLINE]

Related citations

142. **Differential regional expression patterns of α-synuclein, TNF-α, and IL-1β; and variable status of dopaminergic neurotoxicity in mouse brain after Paraquat treatment.**
Mitra S, Chakrabarti N, Bhattacharyya A.

Related citations

143. **Neurotoxin-based models of Parkinson's disease.**
Bové J, Perier C.
PMID: 22108613 [PubMed - indexed for MEDLINE]

Related citations

144. **Subchronic polychlorinated biphenyl (Aroclor 1254) exposure produces oxidative damage and neuronal death of ventral midbrain dopaminergic systems.**
Lee DW, Notter SA, Thiruchelvam M, Dever DP, Fitzpatrick R, Kostyniak PJ, Cory-Slechta DA, Opanashuk LA.
Related citations

145. Rotenone activates phagocyte NADPH oxidase by binding to its membrane subunit gp91phox.

Related citations

146. Mortality from Parkinson's disease and other causes among a workforce manufacturing paraquat: a retrospective cohort study.
Tomenson JA, Campbell C.

Related citations

147. Bee venom protects SH-SY5Y human neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death.
Doo AR, Kim SN, Kim ST, Park JY, Chung SH, Choe BY, Chae Y, Lee H, Yin CS, Park HJ.
PMID: 22078207 [PubMed - indexed for MEDLINE]

Related citations

Ismaili J, Boisvert M, Longpré F, Carange J, Le Gall C, Martinoli MG, Daoust B.
PMID: 22064216 [PubMed - indexed for MEDLINE]

Related citations

149. Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5Y.
PMID: 22056603 [PubMed - indexed for MEDLINE]

Related citations

150. A new role for laminins as modulators of protein toxicity in Caenorhabditis elegans.
Jensen LT, Møller TH, Larsen SA, Jakobsen H, Olsen A.
Related citations

151. **Prevention of paraquat-induced apoptosis in human neuronal SH-SY5Y cells by lipocalin-type prostaglandin D synthase.**
Fujimori K, Fukuhara A, Inui T, Allhorn M.
PMID: 22043816 [PubMed - indexed for MEDLINE]

Related citations

152. **Early exposure to paraquat sensitizes dopaminergic neurons to subsequent silencing of PINK1 gene expression in mice.**
Zhou H, Huang C, Tong J, Xia XG.
PMID: 22043175 [PubMed - indexed for MEDLINE] [Free PMC Article]

Related citations

153. **Protection against dopaminergic neurodegeneration in Parkinson's disease-model animals by a modulator of the oxidized form of DJ-1, a wild-type of familial Parkinson's disease-linked PARK7.**
PMID: 22041943 [PubMed - indexed for MEDLINE] [Free Article]

Related citations

154. **Paraquat and Parkinson's disease: an overview of the epidemiology and a review of two recent studies.**
Mandel JS, Adami HO, Cole P.
PMID: 22024235 [PubMed - indexed for MEDLINE]

Related citations

155. **Deprenyl prevents MPP(+)‐induced oxidative damage in PC12 cells by the upregulation of Nrf2‐mediated NQO1 expression through the activation of PI3K/Akt and Erk.**
Xiao H, Lv F, Xu W, Zhang L, Jing P, Cao X.
PMID: 22019741 [PubMed - indexed for MEDLINE]

Related citations

156. **Identification of bilateral changes in TID1 expression in the 6-OHDA rat model of Parkinson's disease.**
Proft J, Faraji J, Robbins JC, Zucchi FC, Zhao X, Metz GA, Braun JE.

Related citations

157. Leads from xenobiotic metabolism genes for Parkinson's disease among north Indians.
Punia S, Das M, Behari M, Dihana M, Govindappa ST, Muthane UB, Thelma BK, Juyal RC.

Related citations

158. Intranasal administration of neurotoxicants in animals: support for the olfactory vector hypothesis of Parkinson's disease.
PMID: 22002807 [PubMed - indexed for MEDLINE]

Related citations

159. Protective effects of baicalein against rotenone-induced neurotoxicity in PC12 cells and isolated rat brain mitochondria.
Li XX, He GR, Mu X, Xu B, Tian S, Yu X, Meng FR, Xuan ZH, Du GH.
PMID: 21996316 [PubMed - indexed for MEDLINE]

Related citations

160. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade.
Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, Das M, Griffin WS, Jones SM.

Related citations

161. Standardized extracts of Bacopa monniera protect against MPP+- and paraquat-induced toxicity by modulating mitochondrial activities, proteasomal functions, and redox pathways.
Singh M, Murthy V, Ramassamy C.

Related citations

162. Developmental exposure to organophosphates triggers transcriptional changes in genes associated with Parkinson's disease in vitro and in vivo.
Slotkin TA, Seidler FJ.
163. **Chronic dichlorvos exposure: microglial activation, proinflammatory cytokines and damage to nigrostriatal dopaminergic system.**
Binukumar BK, Bal A, Gill KD.
PMID: 21964614 [PubMed - indexed for MEDLINE] Related citations

164. **Protective effect of Bu-7, a flavonoid extracted from Clausena lansium, against rotenone injury in PC12 cells.**
Li BY, Yuan YH, Hu JF, Zhao Q, Zhang DM, Chen NH.
PMID: 21963892 [PubMed - indexed for MEDLINE] Related citations

165. **The neuroprotective enzyme CYP2D6 increases in the brain with age and is lower in Parkinson's disease patients.**
Mann A, Miksys SL, Gaedigk A, Kish SJ, Mash DC, Tyndale RF.
PMID: 21958961 [PubMed - indexed for MEDLINE] Related citations

166. **Acetyl-L-carnitine and α-lipoic acid affect rotenone-induced damage in nigral dopaminergic neurons of rat brain, implication for Parkinson's disease therapy.**
Zaitone SA, Abo-Elmatty DM, Shaalan AA.
PMID: 21958946 [PubMed - indexed for MEDLINE] Related citations

167. **Behavioral, neurochemical and histological alterations promoted by bilateral intranigral rotenone administration: a new approach for an old neurotoxin.**
PMID: 21953489 [PubMed - indexed for MEDLINE]
Related citations

168. Rotenone-mediated changes in intracellular coenzyme A thioester levels: implications for mitochondrial dysfunction.
 Basu SS, Blair IA.

169. Exposure to glyphosate- and/or Mn/Zn-ethylene-bis-dithiocarbamate-containing pesticides leads to degeneration of γ-aminobutyric acid and dopamine neurons in Caenorhabditis elegans.
 Negga R, Stuart JA, Machen ML, Salva J, Lizek AJ, Richardson SJ, Osborne AS, Mirallas O, McVey KA, Fitsanakis VA.

170. Gender segregation in gene expression and vulnerability to oxidative stress induced injury in ventral mesencephalic cultures of dopamine neurons.
 Tao Q, Fan X, Li T, Tang Y, Yang D, Le W.
 PMID: 21919034 [PubMed - indexed for MEDLINE]

171. Residential pesticide usage in older adults residing in Central California.
 Armes MN, Liew Z, Wang A, Wu X, Bennett DH, Hertz-Picciotto I, Ritz B.

172. DJ-1 knock-down impairs astrocyte mitochondrial function.
 Larsen NJ, Ambrosi G, Mullett SJ, Berman SB, Hinkle DA.

173. Differential effects of activating D1 and D2 receptors on electrophysiology of neostriatal neurons in a rat model of Parkinson's disease induced by paraquat and maneb.
 Xu H, Chen R, Cai X, He D.
Leaf extract of Rhus verniciflua Stokes protects dopaminergic neuronal cells in a rotenone model of Parkinson's disease.
Kim S, Park SE, Sapkota K, Kim MK, Kim SJ.
PMID: 21899552 [PubMed - indexed for MEDLINE]

Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults.
PMID: 21892157 [PubMed - indexed for MEDLINE]

Intervention of mitochondrial dysfunction-oxidative stress-dependent apoptosis as a possible neuroprotective mechanism of α-lipoic acid against rotenone-induced parkinsonism and L-dopa toxicity.
Abdin AA, Sarhan NI.
PMID: 21889550 [PubMed - indexed for MEDLINE]

Dopamine oxidation facilitates rotenone-dependent potentiation of N-methyl-D-aspartate currents in rat substantia nigra dopamine neurons.
Wu YN, Johnson SW.
PMID: 21884756 [PubMed - indexed for MEDLINE]

Melatonin protects against rotenone-induced cell injury via inhibition of Omi and Bax-mediated autophagy in Hela cells.
Zhou H, Chen J, Lu X, Shen C, Zeng J, Chen L, Pei Z.
PMID: 21883444 [PubMed - indexed for MEDLINE]

Role of paraoxonase 1 (PON1) in organophosphate metabolism: implications in
neurodegenerative diseases.
Androutsopoulos VP, Kanavouras K, Tsatsakis AM.
PMID: 21864557 [PubMed - indexed for MEDLINE]

Related citations
180. Newly developed Mg2+-selective fluorescent probe enables visualization of Mg2+ dynamics in mitochondria.

Related citations
181. Overexpression of TFAM, NRF-1 and myr-AKT protects the MPP(+) induced mitochondrial dysfunctions in neuronal cells.
Piao Y, Kim HG, Oh MS, Pak YK.
PMID: 21856379 [PubMed - indexed for MEDLINE]

Related citations
182. Protection of dichlorvos induced oxidative stress and nigrostriatal neuronal death by chronic coenzyme Q10 pretreatment.
Binukumar BK, Gupta N, Bal A, Gill KD.
PMID: 21843543 [PubMed - indexed for MEDLINE]

Related citations
183. Alterations in glutathione S-transferase pi expression following exposure to MPP+ -induced oxidative stress in the blood of Parkinson's disease patients.
Korff A, Pfeiffer B, Smeyne M, Kocak M, Pfeiffer RF, Smeyne RJ.

Related citations
184. The effects of paraquat on regional brain neurotransmitter activity, hippocampal BDNF and behavioural function in female mice.
Litteljohn D, Nelson E, Bethune C, Hayley S.
PMID: 21835224 [PubMed - indexed for MEDLINE]
185. **Similar potency of catechin and its enantiomers in alleviating 1-methyl-4-phenylpyridinium ion cytotoxicity in SH-SY5Y cells.**
Ruan HL, Yang Y, Zhu XN, Wang XL, Chen RZ.
PMID: 21827489 [PubMed - indexed for MEDLINE]

186. **JNK3-mediated apoptotic cell death in primary dopaminergic neurons.**
Choi WS, Klintworth HM, Xia Z.

187. **An effective novel delivery strategy of rasagiline for Parkinson's disease.**
Fernández M, Negro S, Slowing K, Fernández-Carballido A, Barcia E.
PMID: 21807080 [PubMed - indexed for MEDLINE]
Related citations

188. **Protective effects of agmatine in rotenone-induced damage of human SH-SY5Y neuroblastoma cells: fourier transform infrared spectroscopy analysis in a model of Parkinson's disease.**
PMID: 21805293 [PubMed - indexed for MEDLINE]
Related citations

189. **Environmental neurotoxic pesticide dieldrin activates a non receptor tyrosine kinase to promote PKCδ-mediated dopaminergic apoptosis in a dopaminergic neuronal cell model.**
Saminathan H, Asaithambi A, Anantharam V, Kanthasamy AG, Kanthasamy A.
Related citations

190. **14-3-3theta protects against neurotoxicity in a cellular Parkinson’s disease model through inhibition of the apoptotic factor Bax.**
Slone SR, Lesort M, Yacoubian TA.
191. **Acute toxicity of MPTP and MPP(+) in the brain of embryo and newborn mice.**
Sai T, Uchida K, Nakayama H.
PMID: 21798732 [PubMed - indexed for MEDLINE]

192. **Neonatal exposure to lipopolysaccharide enhances vulnerability of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life.**
Fan LW, Tien LT, Lin RC, Simpson KL, Rhodes PG, Cai Z.
PMID: 21798348 [PubMed - indexed for MEDLINE] [Free PMC Article]

193. **Epidemiologic studies of glyphosate and non-cancer health outcomes: a review.**
Mink PJ, Mandel JS, Lundin JI, Sceurman BK.
PMID: 21798302 [PubMed - indexed for MEDLINE]

194. **Resistance of the golden hamster to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-neurotoxicity is not only related with low levels of cerebral monoamine oxidase-B.**
Rodríguez S, Ito T, He XJ, Uchida K, Nakayama H.
PMID: 21795029 [PubMed - indexed for MEDLINE]

195. **PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis.**
Cui W, Li W, Han R, Mak S, Zhang H, Hu S, Rong J, Han Y.
PMID: 21781996 [PubMed - indexed for MEDLINE]

196. **Genetic polymorphisms involved in dopaminergic neurotransmission and risk for Parkinson's disease in a Japanese population.**
Related citations

PMID: 21778691 [PubMed - indexed for MEDLINE]
Related citations

198. Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration.
Song C, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG.
Related citations

199. Mitochondrial dysfunction precedes other sub-cellular abnormalities in an in vitro model linked with cell death in Parkinson's disease.
Yong-Kee CJ, Sidorova E, Hanif A, Perera G, Nash JE.
PMID: 21773851 [PubMed - indexed for MEDLINE]
Related citations

200. Endogenous hydrogen sulfide is involved in asymmetric dimethylarginine-induced protection against neurotoxicity of 1-methyl-4-phenylpyridinium ion.
Tang XQ, Fang HR, Li YJ, Zhou CF, Ren YK, Chen RQ, Wang CY, Hu B.
PMID: 21748658 [PubMed - indexed for MEDLINE]
Related citations

201. Neuroprotective cytokines repress PUMA induction in the 1-methyl-4-phenylpyridinium (MPP(+)) model of Parkinson's disease.
Kook YH, Ka M, Um M.
PMID: 21741364 [PubMed - indexed for MEDLINE]
Related citations

34

Neuroprotective effects of vanillyl alcohol in Gastrodia elata Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. Kim IS, Choi DK, Jung HJ.
209. **Parkinson's disease among gardeners exposed to pesticides--a Danish cohort study.**
Kenborg L, Lassen CF, Lander F, Olsen JH.
PMID: 21687921 [PubMed - indexed for MEDLINE]

210. **Edaravone guards dopamine neurons in a rotenone model for Parkinson's disease.**

211. **Vascular damage mediates neuronal and non-neuronal pathology following short and long-term rotenone administration in Sprague-Dawley rats.**
Radad K, Hassanein K, Moldzio R, Rausch WD.
PMID: 21676605 [PubMed - indexed for MEDLINE]

212. **MPP(+)−induced toxicity in the presence of dopamine is mediated by COX-2 through oxidative stress.**
Hsieh YC, Mounsey RB, Teismann P.

213. **Neuroprotection of α-synuclein under acute and chronic rotenone and maneb treatment is abolished by its familial Parkinson's disease mutations A30P, A53T and E46K.**
Choong CJ, Say YH.
PMID: 21658409 [PubMed - indexed for MEDLINE]

214. **Paraquat- and rotenone-induced models of Parkinson's disease.**
Nisticò R, Mehdawy B, Piccirilli S, Mercuri N.
215. **Traumatic brain injury in adult rats causes progressive nigrostriatal dopaminergic cell loss and enhanced vulnerability to the pesticide paraquat.**

216. **Epidemiology and etiology of Parkinson's disease: a review of the evidence.**

217. **Rotenone and paraquat linked to Parkinson's disease: human exposure study supports years of animal studies.**

218. **In search of the causes of Parkinson's disease, seasons 1 to 4.**

219. **The antioxidative effect of electro-acupuncture in a mouse model of Parkinson's disease.**

220. **β-Hexachlorocyclohexane levels in serum and risk of Parkinson's disease.**

221. [Effects of co-exposure to paraquat and maneb on system of substantial nigra and striatum in rats].
Xu HY, Chen RR, Cai XY, He DF.
PMID: 21619794 [PubMed - indexed for MEDLINE]

222. DLP1-dependent mitochondrial fragmentation mediates 1-methyl-4-phenylpyridinium toxicity in neurons: implications for Parkinson's disease.

223. Parkinsonism complicating acute organophosphate insecticide poisoning.
Hashim HZ, Wan Musa WR, Ngju CS, Wan Yahya WN, Tan HJ, Ibrahim N.
PMID: 21603737 [PubMed - indexed for MEDLINE] Free Article

224. Association between environmental exposure to pesticides and neurodegenerative diseases.
Parrón T, Requena M, Hernández AF, Alarcón R.
PMID: 21601587 [PubMed - indexed for MEDLINE]

225. Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson's disease.
Ulusoy GK, Celik T, Kayir H, Gürsoy M, Isik AT, Uzbay TI.
PMID: 21600965 [PubMed - indexed for MEDLINE]

226. Sex- and brain region-specific role of cytochrome c oxidase in 1-methyl-4-phenylpyridinium-mediated astrocyte vulnerability.
Sundar Boyalla S, Barbara Victor M, Roemgens A, Beyer C, Arnold S.
PMID: 21598289 [PubMed - indexed for MEDLINE]
Mena NP, Bulteau AL, Salazar J, Hirsch EC, Núñez MT.
PMID: 21570952 [PubMed - indexed for MEDLINE]
Related citations

228. Effect of malate on the development of rotenone-induced brain changes in Wistar and OXYS rats: An MRI study.
Kolosova NG, Akulov AE, Stefanova NA, Moshkin MP, Savelov AA, Koptyug IV, Panov AV, Vavilin VA.
PMID: 21562948 [PubMed - indexed for MEDLINE]
Related citations

229. The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons.
Kim-Han JS, Antenor-Dorsey JA, O'Malley KL.
Related citations

230. Mitochondrial uncoupling agents antagonize rotenone actions in rat substantia nigra dopamine neurons.
Wu YN, Munhall AC, Johnson SW.
PMID: 21550595 [PubMed - indexed for MEDLINE]
Related citations

231. Myricetin attenuated MPP(+)-induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells.
Zhang K, Ma Z, Wang J, Xie A, Xie J.
PMID: 21549720 [PubMed - indexed for MEDLINE]
Related citations

232. Assessment of fetal brain uptake of paraquat in utero using in vivo PET/CT imaging.
Bartlett RM, Murali D, Nickles RJ, Barnhart TE, Holden JE, DeJesus OT.
Related citations
233. **ASICs mediate the modulatory effect by paeoniflorin on α-synuclein autophagic degradation.**
Sun X, Cao YB, Hu LF, Yang YP, Li J, Wang F, Liu CF.
PMID: 21529788 [PubMed - indexed for MEDLINE]
Related citations

234. **Mitochondrial permeability transition pore component cyclophilin D distinguishes nigrostriatal dopaminergic death paradigms in the MPTP mouse model of Parkinson's disease.**
Thomas B, Banerjee R, Starkova NN, Zhang SF, Calingasan NY, Yang L, Wille E, Lorenzo BJ, Ho DJ, Beal MF, Starkov A.
PMID: 21529244 [PubMed - indexed for MEDLINE] Free PMC Article
Related citations

235. **NewsCAP: Two pesticides raise the risk of Parkinson's disease.**
[No authors listed]
PMID: 23722368 [PubMed - in process]
Related citations

236. **di-3-n-butylphthalide, a natural antioxidant, protects dopamine neurons in rotenone models for Parkinson's disease.**
PMID: 21524431 [PubMed - indexed for MEDLINE]
Related citations

237. **The role of calcium channel blockers and resveratrol in the prevention of paraquat-induced parkinsonism in Drosophila melanogaster: a locomotor analysis.**
PMID: 21523449 [PubMed - indexed for MEDLINE]
Related citations

238. **Parkinson's disease risk from ambient exposure to pesticides.**
Related citations

239. Tetrahydroxystilbene glucoside protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity.

Related citations

240. [5-lipoxygenase is involved in rotenone-induced injury in PC12 cells].

Related citations

241. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease.

Related citations

242. Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson's disease.

Related citations

243. Interferon-γ plays a role in paraquat-induced neurodegeneration involving oxidative and proinflammatory pathways.

Related citations

244. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection.

245. **Knowing me, knowing you: can a knowledge of risk factors for Alzheimer's disease prove useful in understanding the pathogenesis of Parkinson's disease?**
Related citations

246. **Interaction between heme oxygenase-1 genotypes and exposure to pesticides in Parkinson's disease.**
Related citations

247. **PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons.**
Related citations

248. **Dose-dependent loss of motor function after unilateral medial forebrain bundle rotenone lesion in rats: a cautionary note.**
Klein A, Gidyk DC, Shriner AM, Colwell KL, Tatton NA, Tatton WG, Metz GA.
Related citations

249. **Neoechoxinuvin impedes the progression of rotenone-induced cytotoxicity in PC12 cells.**
Related citations

250. The relation between type of farming and prevalence of Parkinson's disease among agricultural workers in five French districts.
PMID: 21412834 [PubMed - indexed for MEDLINE]

Related citations

Hinault MP, Farina-Henriquez-Cuentet A, Goloubinoff P.
PMID: 21411979 [PubMed - indexed for MEDLINE]

Related citations

252. Maneb and paraquat-mediated neurotoxicity: involvement of peroxiredoxin/thioredoxin system.
Roede JR, Hansen JM, Go YM, Jones DP.

Related citations

253. Biochemical and toxicological evidence of neurological effects of pesticides: the example of Parkinson's disease.
Moretto A, Colosio C.
PMID: 21402100 [PubMed - indexed for MEDLINE]

Related citations

254. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson's disease model.
Choi WS, Palmiter RD, Xia Z.

Related citations

255. Granulocyte macrophage-colony stimulating factor protects against substantia nigra dopaminergic cell loss in an environmental toxin model of Parkinson's disease.
PMID: 21377529 [PubMed - indexed for MEDLINE]
Related citations

256. **Exposure to Mn/Zn ethylene-bis-dithiocarbamate and glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans.**
Negga R, Rudd DA, Davis NS, Justice AN, Hatfield HE, Valente AL, Fields AS, Fitsanakis VA.

Related citations

257. **Genetic-based, differential susceptibility to paraquat neurotoxicity in mice.**
Yin L, Lu L, Prasad K, Richfield EK, Unger EL, Xu J, Jones BC.
PMID: 21371552 [PubMed - indexed for MEDLINE]

Related citations

258. **Impairment of oxidative stress-induced heme oxygenase-1 expression by the defect of Parkinson-related gene of PINK1.**
Chien WL, Lee TR, Hung SY, Kang KH, Lee MJ, Fu WM.
PMID: 21366594 [PubMed - indexed for MEDLINE]

Related citations

259. **The expression of nicotinamide N-methyltransferase increases ATP synthesis and protects SH-SY5Y neuroblastoma cells against the toxicity of Complex I inhibitors.**
Parsons RB, Aravindan S, Kadampeswaran A, Evans EA, Sandhu KK, Levy ER, Thomas MG, Austen BM, Ramsden DB.

Related citations

260. **Protection against 1-methyl-4-phenylpyridinium ion (MPP+)-induced apoptosis by water extract of ginseng (Panax ginseng C.A. Meyer) in SH-SY5Y cells.**
Hu S, Han R, Mak S, Han Y.
PMID: 21349320 [PubMed - indexed for MEDLINE]

Related citations

261. **Role of familial, environmental and occupational factors in the development of Parkinson's disease.**
Das K, Ghosh M, Nag C, Nandy SP, Banerjee M, Datta M, Devi G, Chaterjee G.
Related citations

262. (-)-Schisandrin B ameliorates paraquat-induced oxidative stress by suppressing glutathione depletion and enhancing glutathione recovery in differentiated PC12 cells.
Lam PY, Ko KM.
PMID: 21328628 [PubMed - indexed for MEDLINE]
Related citations

263. Dopamine D₁ and D₂ receptor subtypes functional regulation in cerebral cortex of unilateral rotenone lesioned Parkinson's rat model: Effect of serotonin, dopamine and norepinephrine.
Paul J, Kuruvilla KP, Mathew J, Kumar P, Paulose CS.
PMID: 21306935 [PubMed - indexed for MEDLINE]
Related citations

264. DJ-1 mediates paraquat-induced dopaminergic neuronal cell death.
PMID: 21300143 [PubMed - indexed for MEDLINE]
Related citations

265. Impaired CD200-CD200R-mediated microglia silencing enhances midbrain dopaminergic neurodegeneration: roles of aging, superoxide, NADPH oxidase, and p38 MAPK.
PMID: 21295135 [PubMed - indexed for MEDLINE]
Related citations

266. FLZ, a novel HSP27 and HSP70 inducer, protects SH-SY5Y cells from apoptosis caused by MPP(+).
Kong XC, Zhang D, Qian C, Liu GT, Bao XQ.
PMID: 21295016 [PubMed - indexed for MEDLINE]
Related citations

267. Fluoxetine prevents MPTP-induced loss of dopaminergic neurons by inhibiting microglial activation.
Chung YC, Kim SR, Park JY, Chung ES, Park KW, Won SY, Bok E, Jin M, Park ES, Yoon

269. Rotenone, paraquat, and Parkinson's disease.

270. Salidroside protects against MPP(+) -induced apoptosis in PC12 cells by inhibiting the NO pathway.

271. Pesticide exposure and risk of Parkinson's disease--a population-based case-control study evaluating the potential for recall bias.

272. Over-expression of α-synuclein 98 triggers intracellular oxidative stress and enhances susceptibility to rotenone.
Related citations

273. Protection by tetrahydroxystilbene glucoside against neurotoxicity induced by MPP+: the involvement of PI3K/Akt pathway activation.

Related citations

274. HDAC6 regulates aggresome-autophagy degradation pathway of α-synuclein in response to MPP+-induced stress.

Related citations

275. Toxin-induced and genetic animal models of Parkinson's disease.

Related citations

276. Inflammatory mechanisms of neurodegeneration in toxin-based models of Parkinson's disease.

Related citations

277. Protective effect of Chrysanthemum indicum Linne against 1-methyl-4-phenylpridinium ion and lipopolysaccharide-induced cytotoxicity in cellular model of Parkinson's disease.

Related citations

278. DJ-1 deficiency in astrocytes selectively enhances mitochondrial Complex I inhibitor-induced neurotoxicity.
279. Regulation of dopaminergic neuronal death by endogenous dopamine and proteasome activity.

Izumi Y, Kume T, Akaike A.

280. Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice.

Inden M, Kitamura Y, Abe M, Tamaki A, Takata K, Taniguchi T.

281. S-Allylcysteine, a garlic compound, protects against oxidative stress in 1-methyl-4-phenylpyridinium-induced parkinsonism in mice.

Rojas P, Serrano-García N, Medina-Campos ON, Pedraza-Chaverri J, Maldonado PD, Ruiz-Sánchez E.

PMID: 21190833 [PubMed - indexed for MEDLINE]

282. The neuroprotective effect of modified Yeoldahanso-tang via autophagy enhancement in models of Parkinson's disease.

Bae N, Ahn T, Chung S, Oh MS, Ko H, Oh H, Park G, Yang HO.

PMID: 21172413 [PubMed - indexed for MEDLINE]

283. Lrrk2 S1647T and BDNF V66M interact with environmental factors to increase risk of Parkinson's disease.

Lin CH, Wu RM, Tai CH, Chen ML, Hu FC.

PMID: 21167764 [PubMed - indexed for MEDLINE]

284. Differential neuroprotective effects of 14-3-3 proteins in models of Parkinson's disease.

Yacoubian TA, Slone SR, Harrington AJ, Hamamichi S, Schieltz JM, Caldwell KA, Caldwell GA, Standaert DG.

Related citations

285. Liquid chromatographic-electrospray mass spectrometric determination of 1-methyl-4-phenylpyridine (MPP+) in discrete regions of murine brain.
Epub 2010 Dec 13.
Related citations

286. Oral administration of rotenone using a gavage and image analysis of alpha-synuclein inclusions in the enteric nervous system.
Pan-Montojo FJ, Funk RH.
Related citations

287. Paullinia cupana Mart. var. Sorbilis protects human dopaminergic neuroblastoma SH-SY5Y cell line against rotenone-induced cytotoxicity.
de Oliveira DM, Barreto G, Galeano P, Romero JI, Holubiec MI, Badorrey MS, Capani F, Alvarez LD.
PMID: 21081703 [PubMed - indexed for MEDLINE]
Related citations

288. Nigrostriatal neuronal death following chronic dichlorvos exposure: crosstalk between mitochondrial impairments, α synuclein aggregation, oxidative damage and behavioral changes.
Binukumar BK, Bal A, Kandimalla RJ, Gill KD.
Related citations

289. Detoxified extract of Rhus verniciflua stokes inhibits rotenone-induced apoptosis in human dopaminergic cells, SH-SY5Y.
Sapkota K, Kim S, Park SE, Kim SJ.
PMID: 21061154 [PubMed - indexed for MEDLINE]
Related citations

290. Environmental and familial risk factors of Parkinson's disease: case-control study.
Related citations

291. **Proteomic insights into the protective mechanisms of an in vitro oxidative stress model of early stage Parkinson's disease.**
Bauereis B, Haskins WE, Lebaron RG, Renthal R.

Related citations

292. **Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro.**
Lee DH, Kim CS, Lee YJ.

Related citations

293. **Synergistic effects of environmental risk factors and gene mutations in Parkinson's disease accelerate age-related neurodegeneration.**
Peng J, Oo ML, Andersen JK.

Related citations

294. **Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: implications for Parkinson's disease.**
Mythri RB, Harish G, Dubey SK, Misra K, Bharath MM.
PMID: 20972609 [PubMed - indexed for MEDLINE]

Related citations

295. **DJ-1 cleavage by matrix metalloproteinase 3 mediates oxidative stress-induced dopaminergic cell death.**
Choi DH, Hwang O, Lee KH, Lee J, Beal MF, Kim YS.
PMID: 20969476 [PubMed - indexed for MEDLINE]

Related citations

296. **Rosmarinic acid antagonized 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity**
in MES23.5 dopaminergic cells.
Du T, Li L, Song N, Xie J, Jiang H.
PMID: 20966113 [PubMed - indexed for MEDLINE]
Related citations

297. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson's disease phenotype in the mouse.
Theinhal NK, Srivastava G, Patel DK, Jain SK, Singh MP.
PMID: 20964710 [PubMed - indexed for MEDLINE]
Related citations

298. Insulin-like growth factor 1 protects human neuroblastoma cells SH-EP1 against MPP+-induced apoptosis by AKT/GSK-3β/JNK signaling.
Wang L, Yang HJ, Xia YY, Feng ZW.
PMID: 20963499 [PubMed - indexed for MEDLINE]
Related citations

Wingo TS, Rosen A, Cutler DJ, Lah JJ, Levey AI.
Related citations

300. A novel synthetic compound PHID (8-Phenyl-6a, 7, 8, 9, 9a, 10-hexahydro-6H-isoiindolo [5, 6-g] quinoxaline-7, 9-dione) protects SH-SY5Y cells against MPP+-induced cytotoxicity through inhibition of reactive oxygen species generation and JNK signaling.
Kim IS, Koppula S, Kim BW, Song MD, Jung JY, Lee G, Lee HS, Choi DK.
PMID: 20946892 [PubMed - indexed for MEDLINE]
Related citations

301. DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy.
Related citations

302. Protective effect of effective part of Acanthopanax senticosus on damage of PC12 cells induced by MPP+.
An L, Liu S, Dong Y, Tang B, Dong W.
PMID: 20931860 [PubMed - indexed for MEDLINE]

Related citations

303. ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress.
Niso-Santano M, Bravo-San Pedro JM, Gómez-Sánchez R, Climent V, Soler G, Fuentes JM, González-Polo RA.

Related citations

304. PGC-1α, a potential therapeutic target for early intervention in Parkinson's disease.

Related citations

305. Iron mediates neuritic tree collapse in mesencephalic neurons treated with 1-methyl-4-phenylpyridinium (MPP+).
Gómez FJ, Aguirre P, Gonzalez-Billault C, Núñez MT.
PMID: 20890618 [PubMed - indexed for MEDLINE]

Related citations

Barnum CJ, Tansey MG.
PMID: 20887872 [PubMed - indexed for MEDLINE]

Related citations

Cannon JR, Greenamyre JT.
PMID: 20887868 [PubMed - indexed for MEDLINE]
Related citations

308. **Dopamine D$_1$ and D$_2$ receptor subtypes functional regulation in corpus striatum of unilateral rotenone lesioned Parkinson's rat model: effect of serotonin, dopamine and norepinephrine.**
Paul J, Nandhu MS, Kuruvilla KP, Paulose CS.
PMID: 20887679 [PubMed - indexed for MEDLINE]

Related citations

309. **Protective effects of TRH and its analogues against various cytotoxic agents in retinoic acid (RA)-differentiated human neuroblastoma SH-SY5Y cells.**
PMID: 20869113 [PubMed - indexed for MEDLINE]

Related citations

310. **Ethyl-eicosapentaenoate modulates changes in neurochemistry and brain lipids induced by parkinsonian neurotoxin 1-methyl-4-phenylpyridinium in mouse brain slices.**
Meng Q, Luchtman DW, El Bahh B, Zidichouski JA, Yang J, Song C.
PMID: 20868657 [PubMed - indexed for MEDLINE]

Related citations

311. **Extracellular dopamine potentiates mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans.**
Benedetto A, Au C, Avila DS, Milatovic D, Aschner M.

Related citations

312. **Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone.**
PMID: 20854799 [PubMed - indexed for MEDLINE]

Related citations

313. **Paraquat induces cyclooxygenase-2 (COX-2) implicated toxicity in human neuroblastoma SH-SY5Y cells.**
Yang W, Tiffany-Castiglioni E, Lee MY, Son IH.
Integrating multiple aspects of mitochondrial dynamics in neurons: age-related differences and dynamic changes in a chronic rotenone model.
Arnold B, Cassady SJ, VanLaar VS, Berman SB.

Reversal of rotenone-induced dysfunction of astrocytic connexin43 by opening mitochondrial ATP-sensitive potassium channels.
PMID: 20824494 [PubMed - indexed for MEDLINE]

Protective effect of urocortin on 1-methyl-4-phenylpyridinium-induced dopaminergic neuronal death.
Kim Y, Park MK, Chung S.
PMID: 20821057 [PubMed - indexed for MEDLINE]

Progressive loss of dopaminergic neurons induced by unilateral rotenone infusion into the medial forebrain bundle.
Norazit A, Meedeniya AC, Nguyen MN, Mackay-Sim A.
PMID: 20807515 [PubMed - indexed for MEDLINE]

[Parkinson's disease: Role of genetic and environment factors. Involvement in everyday clinical practice].
Defebvre L.
PMID: 20817232 [PubMed - indexed for MEDLINE]

[Parkinson's disease: Is there a strong environmental contribution?].
Elbaz A, Moisan F.
PMID: 20739042 [PubMed - indexed for MEDLINE]
Related citations

320. **DJ-1 as a modulator of autophagy: an hypothesis.**
Related citations

321. **Development of a high-throughput screening assay for cytoprotective agents in rotenone-induced cell death.**
PMID: 20705047 [PubMed - indexed for MEDLINE]
Related citations

322. **Smoking duration, intensity, and risk of Parkinson disease.**
PMID: 20697113 [PubMed - indexed for MEDLINE]
Related citations

323. **Salvianolic acid B protects SH-SY5Y neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptosis.**
Related citations

324. **The neuroprotective effect of talipexole from paraquat-induced cell death in dopaminergic neuronal cells.**
Gómez-Sánchez R, Bravo-San Pedro JM, Niso-Santano M, Soler G, Fuentes JM, González-Polo RA.
PMID: 20673835 [PubMed - indexed for MEDLINE]
Related citations

325. **Differential effect of environmental risk factors on postural instability gait difficulties and tremor dominant Parkinson's disease.**
Skeie GO, Muller B, Haugarvoll K, Larsen JP, Tysnes OB.
56

PMID: 20669310 [PubMed - indexed for MEDLINE]
Related citations

326. α-Synuclein gene may interact with environmental factors in increasing risk of Parkinson's disease.
Gatto NM, Rhodes SL, Manthripragada AD, Bronstein J, Cockburn M, Farrer M, Ritz B.
Related citations

327. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe.
Related citations

328. Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition.
Kidd SK, Schneider JS.
Related citations

329. Morin exerts neuroprotective actions in Parkinson disease models in vitro and in vivo.
Zhang ZT, Cao XB, Xiong N, Wang HC, Huang JS, Sun SG, Wang T.
Related citations

330. Tetrahydroxystilbene glucoside attenuates MPP+-induced apoptosis in PC12 cells by inhibiting ROS generation and modulating JNK activation.
Li X, Li Y, Chen J, Sun J, Li X, Sun X, Kang X.
PMID: 20643188 [PubMed - indexed for MEDLINE]
Related citations

331. Neuroprotective effects of an herbal medicine, Yi-Gan San on MPP+/MPTP-induced cytotoxicity in vitro and in vivo.
Jul 13.
PMID: 20633628 [PubMed - indexed for MEDLINE]

Related citations

332. The RGD-containing peptide fragment of osteopontin protects tyrosine hydroxylase positive cells against toxic insult in primary ventral mesencephalic cultures and in the rat substantia nigra.
Iczkiewicz J, Broom L, Cooper JD, Wong AM, Rose S, Jenner P.
PMID: 20626561 [PubMed - indexed for MEDLINE]

Related citations

333. Rasagiline protects against alpha-synuclein induced sensitivity to oxidative stress in dopaminergic cells.
Chau KY, Cooper JM, Schapira AH.
PMID: 20624440 [PubMed - indexed for MEDLINE]

Related citations

334. Fibroblast growth factor 9 upregulates heme oxygenase-1 and gamma-glutamylcysteine synthetase expression to protect neurons from 1-methyl-4-phenylpyridinium toxicity.
Huang JY, Chuang JI.
PMID: 20615462 [PubMed - indexed for MEDLINE]

Related citations

335. Gypenosides protects dopaminergic neurons in primary culture against MPP(+)‐induced oxidative injury.
Wang P, Niu L, Guo XD, Gao L, Li WX, Jia D, Wang XL, Ma LT, Gao GD.
PMID: 20615455 [PubMed - indexed for MEDLINE]

Related citations

336. The roles of the thioredoxin system and peroxiredoxins in 1-methyl-4-phenyl-pyridinium ion-induced cytotoxicity in rat pheochromocytoma cells.
Chen VT, Huang CL, Lee YC, Liao WC, Huang NK.
PMID: 20600802 [PubMed - indexed for MEDLINE]

Related citations
337. **Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease.**
PMID: 20594614 [PubMed - indexed for MEDLINE]
Related citations

338. **The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons.**
Related citations

339. **Proteomics analysis of MPP+-induced apoptosis in SH-SY5Y cells.**
PMID: 20563739 [PubMed - indexed for MEDLINE]
Related citations

340. **Interaction between ABCB1 and professional exposure to organochlorine insecticides in Parkinson disease.**
Dutheil F, Beaune P, Tzourio C, Loriot MA, Elbaz A.
PMID: 20558393 [PubMed - indexed for MEDLINE]
Related citations

341. **Paeoniflorin, a potent natural compound, protects PC12 cells from MPP+ and acidic damage via autophagic pathway.**
PMID: 20558269 [PubMed - indexed for MEDLINE]
Related citations

342. **Effect of zinc and paraquat co-exposure on neurodegeneration: Modulation of oxidative stress and expression of metallothioneins, toxicant responsive and transporter genes in rats.**
Kumar A, Ahmad I, Shukla S, Singh BK, Patel DK, Pandey HP, Singh C.
PMID: 20553223 [PubMed - indexed for MEDLINE]
Related citations

343. **Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and**
rotenone models of Parkinson's disease are predominantly associated with serotonin and dopamine.
Santiago RM, Barbiero J, Lima MM, Dombrowski PA, Andreatini R, Vital MA.
PMID: 20547199 [PubMed - indexed for MEDLINE]
Related citations

344. R492X mutation in PTEN-induced putative kinase 1 induced cellular mitochondrial dysfunction and oxidative stress.
Yuan XL, Guo JF, Shi ZH, Xiao ZQ, Yan XX, Zhao BL, Tang BS.
PMID: 20547144 [PubMed - indexed for MEDLINE]
Related citations

345. Neuroprotection of deferoxamine on rotenone-induced injury via accumulation of HIF-1 alpha and induction of autophagy in SH-SY5Y cells.
Wu Y, Li X, Xie W, Jankovic J, Le W, Pan T.
PMID: 20546814 [PubMed - indexed for MEDLINE]
Related citations

346. Long-term efficacy and safety of human umbilical cord mesenchymal stromal cells in rotenone-induced hemiparkinsonian rats.
PMID: 20542126 [PubMed - indexed for MEDLINE]
Related citations

347. (-)-Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, reduces dichlorodiphenyl-trichloroethane (DDT)-induced cell death in dopaminergic SHSY-5Y cells.
Tai KK, Truong DD.
PMID: 20542083 [PubMed - indexed for MEDLINE]
Related citations

Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI.
Liposomal-glutathione provides maintenance of intracellular glutathione and neuroprotection in mesencephalic neuronal cells.

Zeevalk GD, Bernard LP, Guilford FT.

PMID: 20535554 [PubMed - indexed for MEDLINE]

Prophylactic treatment with Bacopa monnieri leaf powder mitigates paraquat-induced oxidative perturbations and lethality in Drosophila melanogaster.

Hosamani R, Muralidhara.

Indian J Biochem Biophys. 2010 Apr;47(2):75-82.

PMID: 20521619 [PubMed - indexed for MEDLINE]

The protective role of D-glucose against 1-methyl-4-phenylpyridinium ion (MPP+): induced mitochondrial dysfunction in C6 astroglial cells.

Badisa RB, Darling-Reed SF, Soliman KF.

PMID: 20508987 [PubMed - indexed for MEDLINE]

Extended lifespan of Drosophila parkin mutants through sequestration of redox-active metals and enhancement of anti-oxidative pathways.

Saini N, Oelhafen S, Hua H, Georgiev O, Schaffner W, Büeler H.

PMID: 20483372 [PubMed - indexed for MEDLINE]

GST polymorphisms, interaction with smoking and pesticide use, and risk for Parkinson's disease in a Japanese population.

PMID: 20472488 [PubMed - indexed for MEDLINE]
354. The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons.
Related citations

355. Protective effects of Gastrodia elata Blume on MPP+-induced cytotoxicity in human dopaminergic SH-SY5Y cells.
PMID: 20470875 [PubMed - indexed for MEDLINE]
Related citations

356. α-Synuclein transgenic mice reveal compensatory increases in Parkinson's disease-associated proteins DJ-1 and parkin and have enhanced α-synuclein and PINK1 levels after rotenone treatment.
PMID: 20464527 [PubMed - indexed for MEDLINE]
Related citations

357. Involvement of nitric oxide in maneb- and paraquat-induced Parkinson's disease phenotype in mouse: is there any link with lipid peroxidation?
PMID: 20455021 [PubMed - indexed for MEDLINE]
Related citations

358. Effects of pharmacological agents on the lifespan phenotype of Drosophila DJ-1 beta mutants.
PMID: 20423725 [PubMed - indexed for MEDLINE]
Related citations

359. JNK3 mediates paraquat- and rotenone-induced dopaminergic neuron death.
Related citations
360. **Mechanisms of rotenone-induced proteasome inhibition.**
Chou AP, Li S, Fitzmaurice AG, Bronstein JM.
Related citations

361. **Combined R-alpha-lipoic acid and acetyl-L-carnitine exerts efficient preventative effects in a cellular model of Parkinson's disease.**
PMID: 20414966 [PubMed - indexed for MEDLINE]
Related citations

362. **Phenothiazines interfere with dopaminergic neurodegeneration in Caenorhabditis elegans models of Parkinson's disease.**
Mocko JB, Kern A, Moosmann B, Behl C, Hajieva P.
PMID: 20403440 [PubMed - indexed for MEDLINE]
Related citations

363. **Environmental factors and Parkinson's disease: a case-control study in Belgrade, Serbia.**
Vlajinac HD, Sipetic SB, Maksimovic JM, Marinkovic JM, Dzoljic ED, Ratkov IS, Kostic VS.
PMID: 20402575 [PubMed - indexed for MEDLINE]
Related citations

364. **A trojan horse for Parkinson's disease.**
Hu Y, Tong Y.
PMID: 20371768 [PubMed - indexed for MEDLINE]
Related citations

365. **Increased reactive oxygen species production in the brain after repeated low-dose pesticide paraquat exposure in rats. A comparison with peripheral tissues.**
Kuter K, Nowak P, Golembiowska K, Ossowska K.
PMID: 20369291 [PubMed - indexed for MEDLINE]
Related citations

366. **Inhibition of hydrogen sulfide generation contributes to 1-methy-4-phenylpyridinium ion-
induced neurotoxicity.
Tang XQ, Fan LL, Li YJ, Shen XT, Zhuan YY, He JQ, Xu JH, Hu B, Li YJ.
PMID: 20361290 [PubMed - indexed for MEDLINE] Related citations

367. [Risk factors for Parkinson disease: an epidemiologic study].
Pereira D, Garrett C.
PMID: 20353703 [PubMed - indexed for MEDLINE] Free Article Related citations

368. Persistent organochlorine pesticides in serum and risk of Parkinson disease.
Weisskopf MG, Knekt P, O'Reilly EJ, Lyytinen J, Reunanen A, Laden F, Altshul L, Ascherio A.

369. dl-3-n-Butylphthalide prevents oxidative damage and reduces mitochondrial dysfunction in an MPP(+) induced cellular model of Parkinson's disease.
Huang JZ, Chen YZ, Su M, Zheng HF, Yang YP, Chen J, Liu CF.
PMID: 20347933 [PubMed - indexed for MEDLINE] Related citations

370. Protective effects of xyloketal B against MPP+-induced neurotoxicity in Caenorhabditis elegans and PC12 cells.
PMID: 20347725 [PubMed - indexed for MEDLINE] Related citations

371. Cytochrome P450 2D6 enzyme neuroprotects against 1-methyl-4-phenylpyridinium toxicity in SH-SY5Y neuronal cells.
Mann A, Tyndale RF.
PMID: 20345925 [PubMed - indexed for MEDLINE] Related citations

373. Human PON1, a biomarker of risk of disease and exposure.
 Furlong CE, Suzuki SM, Stevens RC, Marsillach J, Richter RJ, Jarvik GP, Checkoway H,
 Samii A, Costa LG, Griffith A, Roberts JW, Yearout D, Zabetian CP.

374. Insights into the mechanisms of toxicity and tolerance to the agricultural fungicide mancozeb in yeast, as suggested by a chemogenomic approach.
 Dias PJ, Teixeira MC, Telo JP, Sá-Correia I.
 PMID: 20337531 [PubMed - indexed for MEDLINE]

375. Binding of anti-Parkinson's disease drugs to human serum albumin is allosterically modulated.
 PMID: 20225277 [PubMed - indexed for MEDLINE]

376. The toxic influence of paraquat on hippocampus of mice: involvement of oxidative stress.
 PMID: 20211647 [PubMed - indexed for MEDLINE]

377. Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic Parkinson's disease.
 Bayersdorfer F, Voigt A, Schneuwly S, Botella JA.
 PMID: 20211259 [PubMed - indexed for MEDLINE]

378. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis.

Related citations

379. Lysosomal degradation of alpha-synuclein in vivo.
Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, Di Monte DA.

Related citations

380. Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration.
Kachroo A, Irizarry MC, Schwarzschild MA.

Related citations

381. Advances in environmental epidemiology.
Tanner CM.
PMID: 20187243 [PubMed - indexed for MEDLINE]

Related citations

382. Formation of parkin aggregates and enhanced PINK1 accumulation during the pathogenesis of Parkinson's disease.
Um JW, Park HJ, Song J, Jeon I, Lee G, Lee PH, Chung KC.
PMID: 20171192 [PubMed - indexed for MEDLINE]

Related citations

383. Minocycline protects dopaminergic neurons against long-term rotenone toxicity.
Radad K, Moldzio R, Rausch WD.
PMID: 20169778 [PubMed - indexed for MEDLINE]

Related citations

384. Hexokinase II gene transfer protects against neurodegeneration in the rotenone and MPTP mouse models of Parkinson's disease.

Related citations

385. Glycogen synthase kinase 3β and its phosphorylated form (Y216) in the paraquat-induced model of parkinsonism.

Related citations

386. Autophagy protects the rotenone-induced cell death in alpha-synuclein overexpressing SH-SY5Y cells.

Related citations

387. 1-Methyl-4-phenyl-pyridinium time-dependently alters expressions of oxoguanine glycosylase 1 and xeroderma pigmentosum group F protein in PC12 cells.

Related citations

388. Progression of Parkinson's disease pathology is reproduced by intragastric administration of rotenone in mice.

Related citations

389. Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration.

Related citations

390. Lessons from the rotenone model of Parkinson's disease.
Greenamyre JT, Cannon JR, Drolet R, Mastroberardino PG.

391. Paraquat and Parkinson's disease.
Berry C, La Vecchia C, Nicotera P.

392. Effects of MPP+ on the molecular pathways involved in cell cycle control in B65 neuroblastoma cells.

393. Vulnerability of peripheral catecholaminergic neurons to MPTP is not regulated by alpha-synuclein.

394. Toxic influence of chronic oral administration of paraquat on nigrostriatal dopaminergic neurons in C57BL/6 mice.
Ren JP, Zhao YW, Sun XJ.
PMID: 20079141 [PubMed - indexed for MEDLINE] Free Article Related citations

395. MKK6 binds and regulates expression of Parkinson's disease-related protein LRRK2.
PMID: 20067578 [PubMed - indexed for MEDLINE] Free PMC Article Related citations

396. Well-water consumption and Parkinson's disease in rural California.
Gatto NM, Cockburn M, Bronstein J, Manthripragada AD, Ritz B.
397. Pesticides and Parkinson's disease: the legacy of contaminated well water.
Adler T.
Related citations

Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS.
PMID: 20041858 [PubMed - indexed for MEDLINE]
Related citations

399. Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models.
Related citations

400. Apolipoprotein E genotypes in Mexican patients with Parkinson's disease.
PMID: 20037210 [PubMed - indexed for MEDLINE]

401. Organochlorine pesticides dieldrin and lindane induce cooperative toxicity in dopaminergic neurons: role of oxidative stress.
Sharma H, Zhang P, Barber DS, Liu B.
PMID: 20036686 [PubMed - indexed for MEDLINE]
Related citations

402. [Pathogenesis of sporadic Parkinson's disease: contribution of genetic and environmental risk factors].
Takahashi R, Kawamata J, Takeuchi H.
Occupational factors and risk of Parkinson's disease: A population-based case-control study.

Vascular endothelial growth factor B (VEGF-B) is up-regulated and exogenous VEGF-B is neuroprotective in a culture model of Parkinson's disease.
Falk T, Zhang S, Sherman SJ.

The effect of antiparkinsonian drugs on oxidative stress induced pathological [3H]dopamine efflux after in vitro rotenone exposure in rat striatal slices.
Milusheva E, Baranyi M, Kormos E, Hracsikó Z, Sylvester Vizi E, Sperlágh B.
PMID: 19995567 [PubMed - indexed for MEDLINE]

Regulation of matrix metalloproteinase-9 gene expression in MPP+- or 6-OHDA-treated human neuroblastoma SK-N-BE(2)C cells.
Kim SY, Woo MS, Park JS, Kim HS.
PMID: 19962414 [PubMed - indexed for MEDLINE]

PINK1 polymorphism IVS1-7 A-->G, exposure to environmental risk factors and anticipation of disease onset in Brazilian patients with early-onset Parkinson's Disease.
Godeiro C Jr, Aguiar PM, Felício AC, Barsottini OG, Silva SM, Borges V, Andrade LA, Ferraz HB.
PMID: 19944740 [PubMed - indexed for MEDLINE]

DNA polymerase-beta is required for 1-methyl-4-phenylpyridinium-induced apoptotic death in neurons.

414. Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic
Paranoxonase 1, agricultural organophosphate exposure, and Parkinson disease.
Manthripragada AD, Costello S, Cockburn MG, Bronstein JM, Ritz B.
Related citations

Inhibition by rotenone of mesencephalic neural stem-cell migration in a neurosphere assay in vitro.
Ishido M, Suzuki J.
Related citations

The neuroprotective role of tissue inhibitor of metalloproteinase-2 in MPP+- or 6-OHDA-treated SK-N-BE(2)C and SH-SY5Y human neuroblastoma cells.
Kim SY, Woo MS, Park JS, Hyun JW, Kim YS, Kim HS.
Related citations

Effects of insulin-like growth factor-1 on rotenone-induced apoptosis in human lymphocyte cells.
Avila-Gomez IC, Velez-Pardo C, Jimenez-Del-Rio M.
Related citations

Anemia or low hemoglobin levels preceding Parkinson disease: a case-control study.
Related citations
Kalivendi SV, Yedlapudi D, Hillard CJ, Kalyanaraman B.
PMID: 19857570 [PubMed - indexed for MEDLINE]
Related citations

421. Panaxatriol saponins extracted from Panax notoginseng induces thioredoxin-1 and prevents 1-methyl-4-phenylpyridinium ion-induced neurotoxicity.
Luo FC, Wang SD, Li K, Nakamura H, Yodoi J, Bai J.
PMID: 19857566 [PubMed - indexed for MEDLINE]
Related citations

422. Synphilin-1 exhibits trophic and protective effects against Rotenone toxicity.
PMID: 19857556 [PubMed - indexed for MEDLINE]
Related citations

423. Professional exposure to pesticides and Parkinson disease.
PMID: 19847896 [PubMed - indexed for MEDLINE]
Related citations

424. HDAC inhibitor trichostatin A-inhibited survival of dopaminergic neuronal cells.
PMID: 19835929 [PubMed - indexed for MEDLINE]
Related citations

425. Enhanced metallothionein gene expression induced by mitochondrial oxidative stress is reduced in phospholipid hydroperoxide glutathione peroxidase-overexpressed cells.
Kadota Y, Suzuki S, Ideta S, Fukinbara Y, Kawakami T, Imai H, Nakagawa Y, Sato M.
PMID: 19818760 [PubMed - indexed for MEDLINE]
Related citations
Conjugal Parkinsonism and Parkinson disease: a case series with environmental risk factor analysis.

Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP+-induced oxidative stress.

Pyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-dione derivatives: their cytoprotection effect from rotenone toxicity and preliminary DMPK properties.

Interferon-gamma deficiency modifies the motor and co-morbid behavioral pathology and neurochemical changes provoked by the pesticide paraquat.

NF-kappaB mediates MPP+-induced apoptotic cell death in neuroblastoma cells SH-EP1 through JNK and c-Jun/AP-1.

Chrysanthemum morifolium Ramat (CM) extract protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity.
432. **Differential contribution of the mitochondrial respiratory chain complexes to reactive oxygen species production by redox cycling agents implicated in parkinsonism.**
Drechsel DA, Patel M.
PMID: 19767442 [PubMed - indexed for MEDLINE] [Free PMC Article]

433. **Mitochondrial uncoupling protein-2 (UCP2) mediates leptin protection against MPP+ toxicity in neuronal cells.**
Ho PW, Liu HF, Ho JW, Zhang WY, Chu AC, Kwok KH, Ge X, Chan KH, Ramsden DB, Ho SL.
PMID: 19763737 [PubMed - indexed for MEDLINE] [Free PMC Article]

434. **Novel mitochondrial substrates of omi indicate a new regulatory role in neurodegenerative disorders.**
Johnson F, Kaplitt MG.
PMID: 19763263 [PubMed - indexed for MEDLINE] [Free PMC Article]

435. **Occupation and risk of parkinsonism: a multicenter case-control study.**
PMID: 19752299 [PubMed - indexed for MEDLINE]

436. **Influence of dermal exposure to the pyrethroid insecticide deltamethrin on rat brain microanatomy and cholinergic/dopaminergic neurochemistry.**
Tayebati SK, Di Tullio MA, Ricci A, Amenta F.
PMID: 19748499 [PubMed - indexed for MEDLINE]

437. **K(ATP) channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production.**
Xie J, Duan L, Qian X, Huang X, Ding J, Hu G.
Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster.
Hosamani R, Muralidhara.
PMID: 19744517 [PubMed - indexed for MEDLINE]

Rg1 protects the MPP+-treated MES23.5 cells via attenuating DMT1 up-regulation and cellular iron uptake.
Xu H, Jiang H, Wang J, Xie J.
PMID: 19744503 [PubMed - indexed for MEDLINE]

Paraquat activates the IRE1/ASK1/JNK cascade associated with apoptosis in human neuroblastoma SH-SY5Y cells.
Yang W, Tiffany-Castiglioni E, Koh HC, Son IH.
PMID: 19735704 [PubMed - indexed for MEDLINE]

Cyclo(His-Pro) up-regulates heme oxygenase 1 via activation of Nrf2-ARE signalling.
Minelli A, Conte C, Grottelli S, Bellezza I, Emiliani C, Bolaños JP.
PMID: 19735445 [PubMed - indexed for MEDLINE]

Environmental toxins and Parkinson's disease: what have we learned from pesticide-induced animal models?
Cicchetti F, Drouin-Ouellet J, Gross RE.
PMID: 19729209 [PubMed - indexed for MEDLINE]

Protective effect of histamine H2 receptor antagonist ranitidine against rotenone-induced apoptosis.

444. Effects of epigallocatechin gallate on rotenone-injured murine brain cultures.

445. The effects of polyphenols on survival and locomotor activity in Drosophila melanogaster exposed to iron and paraquat.

446. Rapamycin protects against rotenone-induced apoptosis through autophagy induction.

447. Melatonin treatment potentiates neurodegeneration in a rat rotenone Parkinson's disease model.

448. Curcumin enhances paraquat-induced apoptosis of N27 mesencephalic cells via the generation of reactive oxygen species.

Related citations

450. Neuroprotective effect of the antiparkinsonian drug pramipexole against nigrostriatal dopaminergic degeneration in rotenone-treated mice.
PMID: 19647776 [PubMed-indexed for MEDLINE]

Related citations

451. Alpha-synuclein knockdown attenuates MPP+ induced mitochondrial dysfunction of SH-SY5Y cells.
PMID: 19646423 [PubMed-indexed for MEDLINE]

Related citations

452. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and parkinsonism in adult rats: neuroprotection and amelioration of symptoms by water-soluble formulation of coenzyme Q10.

Related citations

453. [Pesticides and parkinson's: a confirmed link] [1]
Nau JY.
PMID: 19634540 [PubMed-indexed for MEDLINE]

Related citations

454. Alteration of NRSF expression exacerbating 1-methyl-4-phenyl-pyridinium ion-induced cell death of SH-SY5Y cells.
PMID: 19631241 [PubMed-indexed for MEDLINE]

Related citations

455. Valproic acid is neuroprotective in the rotenone rat model of Parkinson's disease:
involvement of alpha-synuclein.
Monti B, Gatta V, Piretti F, Raffaelli SS, Virgili M, Contestabile A.
PMID: 19626387 [PubMed - indexed for MEDLINE]
Related citations

456. LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans.
Related citations

457. Quantification of Paraquat, MPTP, and MPP+ in brain tissue using microwave-assisted solvent extraction (MASE) and high-performance liquid chromatography-mass spectrometry.
Winnik B, Barr DB, Thiruchelvam M, Montesano MA, Richfield EK, Buckley B.
PMID: 19618168 [PubMed - indexed for MEDLINE]
Related citations

458. Effects of glutamate and alpha2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats.
Alam M, Danysz W, Schmidt WJ, Dekundy A.
PMID: 19616571 [PubMed - indexed for MEDLINE]
Related citations

459. Elevated serum pesticide levels and risk of Parkinson disease.
Richardson JR, Shalat SL, Buckley B, Winnik B, O'Suilleabhain P, Diaz-Arrastia R, Reisch J, German DC.
Related citations

460. Chronic rotenone exposure reproduces Parkinson's disease gastrointestinal neuropathology.
Drolet RE, Cannon JR, Montero L, Greenamyre JT.
PMID: 19595768 [PubMed - indexed for MEDLINE]
Related citations
461. The expression of CYP2D22, an ortholog of human CYP2D6, in mouse striatum and its modulation in 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease phenotype and nicotine-mediated neuroprotection.

462. Dopamine transporter genetic variants and pesticides in Parkinson's disease.

463. Induction of heat shock protein 70 reduces the alteration of striatal electrical activity caused by mitochondrial impairment.

464. Pegylated nanoliposomes remote-loaded with the antioxidant tempamine ameliorate experimental autoimmune encephalomyelitis.

465. Rotenone and paraquat do not directly activate microglia or induce inflammatory cytokine release.

466. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease.
Ming M, Li X, Fan X, Yang D, Li L, Chen S, Gu Q, Le W.
467. **Fucoidan protects against dopaminergic neuron death in vivo and in vitro.**

PMID: 19545563 [PubMed - indexed for MEDLINE]

468. **Tranexamic acid protects against rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells.**

Kim HJ, Park HJ, Park HK, Chung JH.
PMID: 19539006 [PubMed - indexed for MEDLINE]

469. **Metabolic control analysis in a cellular model of elevated MAO-B: relevance to Parkinson’s disease.**

Mallajosyula JK, Chinta SJ, Rajagopalan S, Nicholls DG, Andersen JK.
PMID: 19526285 [PubMed - indexed for MEDLINE]

470. **The carboxyl-terminal domain of the heavy chain of tetanus toxin prevents dopaminergic degeneration and improves motor behavior in rats with striatal MPP(+) lesions.**

Mendieta L, Venegas B, Moreno N, Patricio A, Martínez I, Aguilera J, Limón ID.
PMID: 19523997 [PubMed - indexed for MEDLINE]

471. **Rotenone induces cell death of cholinergic neurons in an organotypic co-culture brain slice model.**

Ullrich C, Humpel C.
PMID: 19495971 [PubMed - indexed for MEDLINE]

472. **Effect of pesticides on cell survival in liver and brain rat tissues.**

Astiz M, de Alaniz MJ, Marra CA.
Fibroblast growth factor 9 prevents MPP+-induced death of dopaminergic neurons and is involved in melatonin neuroprotection in vivo and in vitro.
Huang JY, Hong YT, Chuang JI.
PMID: 19476551 [PubMed - indexed for MEDLINE]

Protective effects of resveratrol and quercetin against MPP+-induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons.
Bournival J, Quessy P, Martinoli MG.
PMID: 19466539 [PubMed - indexed for MEDLINE]

Effects of the organochlorine pesticide methoxychlor on dopamine metabolites and transporters in the mouse brain.
Schuh RA, Richardson JR, Gupta RK, Flaws JA, Fiskum G.

The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death.
Cristóvão AC, Choi DH, Baltazar G, Beal MF, Kim YS.

The homocysteine-inducible endoplasmic reticulum stress protein counteracts calcium store depletion and induction of CCAAT enhancer-binding protein homologous protein in a neurotoxin model of Parkinson disease.
Chigurupati S, Wei Z, Belal C, Vandermey M, Kyriazis GA, Arumugam TV, Chan SL.

Paraquat induces alternation of the dopamine catabolic pathways and glutathione levels in the substantia nigra of mice.
Kang MJ, Gil SJ, Koh HC.
5. PMID: 19446248 [PubMed - indexed for MEDLINE]
Related citations

479. **Involvement of glyceraldehyde-3-phosphate dehydrogenase in rotenone-induced cell apoptosis: relevance to protein misfolding and aggregation.**
PMID: 19445904 [PubMed - indexed for MEDLINE]
Related citations

480. **Pigment epithelium derived factor (PEDF) is neuroprotective in two in vitro models of Parkinson's disease.**
Falk T, Zhang S, Sherman SJ.
PMID: 19442875 [PubMed - indexed for MEDLINE]
Related citations

481. **Inhibition of platelet aggregation by 1-methyl-4-phenyl pyridinium ion (MPP+) through ATP depletions: Evidence for the reduced platelet activities in Parkinson's disease.**
PMID: 19437333 [PubMed - indexed for MEDLINE]
Related citations

482. **Involvement of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons.**
Petit-Paitel A, Brau F, Cazareth J, Chabry J.
Related citations

483. **Rotenone reduces Mg2+-dependent block of NMDA currents in substantia nigra dopamine neurons.**
Wu YN, Johnson SW.
PMID: 19428506 [PubMed - indexed for MEDLINE]
Related citations

484. **Silencing DJ-1 reveals its contribution in paraquat-induced autophagy.**
González-Polo R, Niso-Santano M, Morán JM, Ortiz-Ortiz MA, Bravo-San Pedro JM, Soler G, Fuentes JM.
A2A adenosine receptor antagonists protect the striatum against rotenone-induced neurotoxicity.
PMID: 19416678 [PubMed - indexed for MEDLINE]

A role for a novel protein, nucleolin, in Parkinson's disease.
Caudle WM, Kitsou E, Li J, Bradner J, Zhang J.

Related citations

Related citations

Related citations

Related citations

Related citations

Tyrosine hydroxylase-positive amacrine interneurons in the mouse retina are resistant against the application of various parkinsonian toxins.
Nagel F, Bähr M, Dietz GP.
PMID: 19406215 [PubMed - indexed for MEDLINE]

Related citations

Related citations

Effect of centrophenoxine against rotenone-induced oxidative stress in an animal model of Parkinson's disease.
Verma R, Nehru B.
491. BDNF mediates the neuroprotective effects of positive AMPA receptor modulators against MPP+-induced toxicity in cultured hippocampal and mesencephalic slices.
Jourdi H, Hamo L, Oka T, Seegan A, Baudry M.
Related citations

492. Chapter 22 The uptake and interactions of the redox cycler paraquat with mitochondria.
Cochemé HM, Murphy MP.
PMID: 19348901 [PubMed - indexed for MEDLINE]
Related citations

493. Survival motor neuron deficiency enhances progression in an amyotrophic lateral sclerosis mouse model.
Turner BJ, Parkinson NJ, Davies KE, Talbot K.
PMID: 19332122 [PubMed - indexed for MEDLINE]
Related citations

494. In vitro dopaminergic neuroprotective and in vivo antiparkinsonian-like effects of Delta 3,2-hydroxybakuchiol isolated from Psoralea corylifolia (L.).
Zhao G, Zheng XW, Qin GW, Gai Y, Jiang ZH, Guo LH.
PMID: 19322517 [PubMed - indexed for MEDLINE]
Related citations

495. Pyrethroid and organophosphate insecticide exposure in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease: an immunohistochemical analysis of tyrosine hydroxylase and glial fibrillary acidic protein in dorsolateral striatum.
Dodd CA, Klein BG.
PMID: 19318502 [PubMed - indexed for MEDLINE]
Related citations

496. MPTP-induced model of Parkinson's disease in cytochrome P450 2E1 knockout mice.
Viaggi C, Vaglini F, Pardini C, Caramelli A, Corsini GU.
497. **Zocor Forte (simvastatin) has a neuroprotective effect against LPS striatal dopaminergic terminals injury, whereas against MPP+ does not.**

Santiago M, Hernández-Romero MC, Machado A, Cano J.

PMID: 19292984 [PubMed - indexed for MEDLINE]

Related citations

498. **Vascular pathology in male Lewis rats following short-term, low-dose rotenone administration.**

Allen AL, Luo C, Montgomery DL, Rajput AH, Robinson CA, Rajput A.

Related citations

499. **Parkinson's disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California.**

Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B.

Related citations

500. **Nicotinic receptor-mediated neuroprotection in neurodegenerative disease models.**

Shimohama S.

Related citations

501. **A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson's disease.**

Related citations

502. **Modulation of connexin 43 in rotenone-induced model of Parkinson's disease.**

Kawasaki A, Hayashi T, Nakachi K, Trosko JE, Sugihara K, Kotake Y, Ohta S.

503. [Cellular pathophysiology of Parkinson's disease].
Takeda A, Sugeno N, Hasegawa T, Kobayashi M, Kikuchi A.
PMID: 19198139 [PubMed - indexed for MEDLINE]
Related citations

504. MDR1 variants and risk of Parkinson disease. Association with pesticide exposure?
PMID: 19184162 [PubMed - indexed for MEDLINE]
Related citations

Related citations

506. Alterations of N/OFQ and NOP receptor gene expression in the substantia nigra and caudate putamen of MPP+ and 6-OHDA lesioned rats.
Di Benedetto M, Cavina C, D'Addario C, Leoni G, Candeletti S, Cox BM, Romualdi P.
Related citations

507. A novel derivative of the natural agent deguelin for cancer chemoprevention and therapy.
Kim WY, Chang DJ, Hennessy B, Kang HJ, Yoo J, Han SH, Kim YS, Park HJ, Seo SY, Mills G, Kim KW, Hong WK, Suh YG, Lee HY.
Related citations

508. Insights into yeast adaptive response to the agricultural fungicide mancozeb: a
toxicoproteomics approach.
Santos PM, Simões T, Sá-Correia I.
PMID: 19137554 [PubMed - indexed for MEDLINE]
Related citations

509. Paraquat is excluded by the blood brain barrier in rhesus macaque: An in vivo pet study.
Bartlett RM, Holden JE, Nickles RJ, Murali D, Barbee DL, Barnhart TE, Christian BT, DeJesus OT.
Related citations

510. Antidepressants reveal differential effect against 1-methyl-4-phenylpyridinium toxicity in differentiated PC12 cells.
Han YS, Lee CS.
PMID: 19135049 [PubMed - indexed for MEDLINE]
Related citations

511. Protective effect against Parkinson's disease-related insults through the activation of XBP1.
PMID: 19135031 [PubMed - indexed for MEDLINE]
Related citations

512. Rotenone damages striatal organotypic slice culture.
Moldzio R, Piskernik C, Radad K, Rausch WD.
PMID: 19120153 [PubMed - indexed for MEDLINE]
Related citations

513. Catalpol attenuates nitric oxide increase via ERK signaling pathways induced by rotenone in mesencephalic neurons.
PMID: 19111870 [PubMed - indexed for MEDLINE]
Related citations

514. Evaluation of a TiO2 photocatalysis treatment on nitrophenols and nitramines contaminated

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations

520. Unregulated mitochondrial GSK3beta activity results in NADH: ubiquinone oxidoreductase
deficiency.
King TD, Clodfelder-Miller B, Barksdale KA, Bijur GN.
Related citations

521. Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts.
Related citations

522. Analysis of targeted mutation in DJ-1 on cellular function in primary astrocytes.
Ashley AK, Hanneman WH, Katoh T, Moreno JA, Pollack A, Tjalkens RB, Legare ME.
PMID: 19063952 [PubMed - indexed for MEDLINE]
Related citations

523. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research.
Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, Chang RC.
PMID: 19056420 [PubMed - indexed for MEDLINE]
Related citations

524. Ghrelin antagonized 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells.
Dong J, Song N, Xie J, Jiang H.
PMID: 19052922 [PubMed - indexed for MEDLINE]
Related citations

525. MPTP and MPP+ target specific aminergic cell populations in larval zebrafish.
Sallinen V, Torkko V, Sundvik M, Reenilä I, Khrustalyov D, Kaslin J, Panula P.
PMID: 19046410 [PubMed - indexed for MEDLINE]
Related citations

526. Pesticide/environmental exposures and Parkinson's disease in East Texas.
Dhillon AS, Tarbutton GL, Levin JL, Plotkin GM, Lowry LK, Nalbone JT, Shepherd S.
PMID: 19042691 [PubMed - indexed for MEDLINE]

Related citations

527. The effect of alpha-synuclein knockdown on MPP+ toxicity in models of human neurons.

Related citations

528. Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation.
Peng J, Stevenson FF, Oo ML, Andersen JK.

Related citations

529. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases.
Migliore L, Coppedè F.
PMID: 19026668 [PubMed - indexed for MEDLINE]

Related citations

530. Involvement of ubiquitin proteasome system in protective mechanisms of Puerarin to MPP(+) elicited apoptosis.
PMID: 19022306 [PubMed - indexed for MEDLINE]

Related citations

531. Low dose rotenone treatment causes selective transcriptional activation of cell death related pathways in dopaminergic neurons in vivo.
PMID: 19013527 [PubMed - indexed for MEDLINE]

Related citations

532. Smoking and Parkinson's disease: does nicotine affect alpha-synuclein fibrillation?

Related citations

533. **Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation.**

Related citations

534. **Okadaic acid protects human neuroblastoma SH-SY5Y cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis.**

Related citations

535. **ExTRANIGRAL neurodegeneration in Parkinson's disease.**

Related citations

536. **Synthesis of chiral 3-methyl- and 3-methyl-N-propargyl-1,2,3,4-tetrahydroisoquinoline and prevention of MPP+-induced cytotoxicity.**

Related citations

537. **The involvement of nitric oxide in maneb- and paraquat-induced oxidative stress in rat polymorphonuclear leukocytes.**

Related citations

538. **Protective effect of estrogen on apoptosis in a cell culture model of Parkinson's disease.**
Related citations

539. Repeated developmental exposure to chlorpyrifos and methyl parathion causes persistent alterations in nicotinic acetylcholine subunit mRNA expression with chlorpyrifos altering dopamine metabolite levels.
Eells JB, Brown T.
PMID: 18977431 [PubMed - indexed for MEDLINE]
Related citations

540. Environmental-induced oxidative stress in neurodegenerative disorders and aging.
Migliore L, Coppedè F.
PMID: 18952194 [PubMed - indexed for MEDLINE]
Related citations

541. DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone.
Mullett SJ, Hinkle DA.
Related citations

542. Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone- and MPP+-induced neurotoxicity.
Ying R, Liang HL, Whelan HT, Eells JT, Wong-Riley MT.
PMID: 18848925 [PubMed - indexed for MEDLINE]
Related citations

543. Identification of genes associated with paraquat-induced toxicity in SH-SY5Y cells by PCR array focused on apoptotic pathways.
Moran JM, Gonzalez-Polo RA, Ortiz-Ortiz MA, Niso-Santano M, Soler G, Fuentes JM.
PMID: 18836921 [PubMed - indexed for MEDLINE]
Related citations

Hu LF, Lu M, Wu ZY, Wong PT, Bian JS.

Aug 30.
PMID: 18805449 [PubMed - indexed for MEDLINE]
Related citations
551. **Increased vulnerability to rotenone-induced neurotoxicity in ceruloplasmin-deficient mice.** Kaneko K, Hineno A, Yoshida K, Ikeda S.
PMID: 18804145 [PubMed - indexed for MEDLINE]
Related citations
552. **Parkinson disease: primacy of age as a risk factor for mitochondrial dysfunction.** Vanitallie TB.
PMID: 18803967 [PubMed - indexed for MEDLINE]
Related citations
553. **Do early-life insults contribute to the late-life development of Parkinson and Alzheimer diseases?** Miller DB, O'Callaghan JP.
PMID: 18803966 [PubMed - indexed for MEDLINE]
Related citations
PMID: 18803299 [PubMed - indexed for MEDLINE]
Related citations
555. **Protective effects of asiatic acid on rotenone- or H2O2-induced injury in SH-SY5Y cells.** Xiong Y, Ding H, Xu M, Gao J.
PMID: 18802751 [PubMed - indexed for MEDLINE]
Related citations
556. **Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity.** Hung SY, Liou HC, Kang KH, Wu RM, Wen CC, Fu WM.
17. Arterial baroreflex dysfunction fails to mimic Parkinson's disease in rats.
Related citations

557. Coupling endoplasmic reticulum stress to the cell death program in dopaminergic cells: effect of paraquat.
Chinta SJ, Rane A, Poksay KS, Bredesen DE, Andersen JK, Rao RV.
Related citations

558. Paraquat inhibits postsynaptic AMPA receptors on dopaminergic neurons in the substantia nigra pars compacta.
Lee CY, Lee CH, Shih CC, Liou HH.
PMID: 18761327 [PubMed-indexed for MEDLINE] Related citations

559. Catalytic metalloporphyrin protects against paraquat neurotoxicity in vivo.
PMID: 18714822 [PubMed-indexed for MEDLINE] Related citations

560. Polyhydroxylated fullerene derivative C(60)(OH)(24) prevents mitochondrial dysfunction and oxidative damage in an MPP(+) -induced cellular model of Parkinson's disease.
PMID: 18709653 [PubMed-indexed for MEDLINE] Related citations

561. Iptakalim protects against MPP+-induced degeneration of dopaminergic neurons in association with astrocyte activation.
Yang YJ, Zhang S, Ding JH, Zhou F, Hu G.
PMID: 18700057 [PubMed - indexed for MEDLINE]

563. Synergistic microglial reactive oxygen species generation induced by pesticides lindane and dieldrin.
Mao H, Liu B.
PMID: 18695515 [PubMed - indexed for MEDLINE]

564. Beneficial effects of carnosic acid on dieldrin-induced dopaminergic neuronal cell death.
PMID: 18695511 [PubMed - indexed for MEDLINE]

565. Induction of the drug metabolizing enzyme CYP2D in monkey brain by chronic nicotine treatment.
Mann A, Miksys S, Lee A, Mash DC, Tyndale RF.
PMID: 18687346 [PubMed - indexed for MEDLINE]

566. Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition.

Hancock DB, Martin ER, Vance JM, Scott WK.

568. Isolation and identification of Suavissimoside R1 from roots of Rubus parvifollus used for protecting dopaminergic neurons against MPP+ toxicity.
Yu ZY, Ruan HL, Zhu XN, Wang XL, Chen RZ, Lin YC.
PMID: 18661829 [PubMed - indexed for MEDLINE]
Cyclooxygenase-2 deficiency modifies the neurochemical effects, motor impairment and co-morbid anxiety provoked by paraquat administration in mice.

Related citations

Neoechinulin A protects PC12 cells against MPP+-induced cytotoxicity.

Related citations

Pitx3-transfected astrocytes secrete brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor and protect dopamine neurons in mesencephalon cultures.

Related citations

Synergistic anti-Parkinsonism activity of high doses of B vitamins in a chronic cellular model.

Related citations

Overexpression of Kir2.3 in PC12 cells resists rotenone-induced neurotoxicity associated with PKC signaling pathway.

Related citations

Interaction of mitochondrial respiratory inhibitors and excitotoxins potentiates cell death in hippocampal slice cultures.

Related citations

Related citations

575. The effects of piroxicam in the attenuation of MPP+/MPTP toxicity in vitro and in vivo.
Soliman Y, Jackson T, Mazzio E, Soliman KF.

Related citations

576. Update in the epidemiology of Parkinson's disease.
Elbaz A, Moisan F.
PMID: 18607207 [PubMed - indexed for MEDLINE]

Related citations

577. Paraquat exposure reduces nicotinic receptor-evoked dopamine release in monkey striatum.
O'Leary KT, Parameswaran N, Johnston LC, McIntosh JM, Di Monte DA, Quik M.

Related citations

578. Paraquat and maneb induced neurotoxicity.
Thrash B, Uthayathas S, Karuppagounder SS, Suppiramaniam V, Dhanasekaran M.
PMID: 18605226 [PubMed - indexed for MEDLINE]

Related citations

579. Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells.
Watabe M, Nakaki T.

Related citations

580. Proteasomal inhibition reduces parkin mRNA in PC12 and SH-SY5Y cells.
PMID: 18586549 [PubMed - indexed for MEDLINE]

Related citations

581. Chronic intraventricular administration of 1-methyl-4-phenylpyridinium as a progressive model of Parkinson's disease.
Related citations

582. Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism.

583. Developmental heptachlor exposure increases susceptibility of dopamine neurons to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in a gender-specific manner.

584. Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia.

585. Effect of dopaminergic neurotoxin MPTP/MPP+ on coenzyme Q content.

586. The effects of environmental neurotoxicants on the dopaminergic system: A possible role in drug addiction.

587. The cannabinoid CP55,940 prolongs survival and improves locomotor activity in Drosophila melanogaster against paraquat: implications in Parkinson's disease.
PMID: 18538428 [PubMed - indexed for MEDLINE]
Related citations

588. Expression of Cbl-interacting protein of 85 kDa in MPTP mouse model of Parkinson's disease and 1-methyl-4-phenyl-pyridinium ion-treated dopaminergic SH-SY5Y cells.
Related citations

589. Disruption of dopamine transport by DDT and its metabolites.
PMID: 18533268 [PubMed - indexed for MEDLINE]
Related citations

Related citations

591. Triptolide protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats: implication for immunosuppressive therapy in Parkinson's disease.
PMID: 18500385 [PubMed - indexed for MEDLINE]
Related citations

592. ICP10PK inhibits calpain-dependent release of apoptosis-inducing factor and programmed cell death in response to the toxin MPP+.
Related citations

593. Mitochondrial function in Parkinson's disease cybrids containing an nt2 neuron-like nuclear background.
Esteves AR, Domingues AF, Ferreira IL, Januário C, Swerdlow RH, Oliveira CR, Cardoso SM.
PMID: 18495557 [PubMed - indexed for MEDLINE]
Related citations

594. Dopamine transporter inhibitory and antiparkinsonian effect of common flowering quince extract.
Zhao G, Jiang ZH, Zheng XW, Zang SY, Guo LH.
PMID: 18485464 [PubMed - indexed for MEDLINE]
Related citations

Press C, Milbrandt J.
Related citations

596. Kynurenic acid attenuates MPP(+) -induced dopaminergic neuronal cell death via a Bax-mediated mitochondrial pathway.
PMID: 18462830 [PubMed - indexed for MEDLINE]
Related citations

597. Human ApoD, an apolipoprotein up-regulated in neurodegenerative diseases, extends lifespan and increases stress resistance in Drosophila.
Muffat J, Walker DW, Benzer S.
Related citations

598. Methionine sulfoxide reductase A protects dopaminergic cells from Parkinson's disease-related insults.
Related citations
599. **Impact of dietary exposure to food contaminants on the risk of Parkinson's disease.**
PMID: 18455239 [PubMed - indexed for MEDLINE]
Related citations

600. **Parkinson's disease and pesticides: a toxicological perspective.**
Hatcher JM, Pennell KD, Miller GW.
PMID: 18453001 [PubMed - indexed for MEDLINE]
Related citations

601. **Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death.**
Cho HS, Kim S, Lee SY, Park JA, Kim SJ, Chun HS.
PMID: 18452993 [PubMed - indexed for MEDLINE]
Related citations

602. **Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity.**
Liang HL, Whelan HT, Eells JT, Wong-Riley MT.
Related citations

603. **Gene expression profiles of mouse striatum in control and maneb + paraquat-induced Parkinson's disease phenotype: validation of differentially expressed energy metabolizing transcripts.**
Patel S, Singh K, Singh S, Singh MP.
PMID: 18386188 [PubMed - indexed for MEDLINE]
Related citations

604. **Oxidative insults induce DJ-1 upregulation and redistribution: implications for neuroprotection.**
Lev N, Ickowicz D, Melamed E, Offen D.
Mar 10.
PMID: 18377993 [PubMed - indexed for MEDLINE]

Related citations

605. Pesticide exposure and risk of Parkinson's disease: a family-based case-control study.
Hancock DB, Martin ER, Mayhew GM, Stajich JM, Jewett R, Stacy MA, Scott BL, Vance JM, Scott WK.

Related citations

606. MPP+-induced neuronal death in rats involves tyrosine 33 phosphorylation of WW domain-containing oxidoreductase WOX1.
Lo CP, Hsu LJ, Li MY, Hsu SY, Chuang JI, Tsai MS, Lin SR, Chang NS, Chen ST.
PMID: 18371080 [PubMed - indexed for MEDLINE]

Related citations

Rio MJ, Velez-Pardo C.
PMID: 18365879 [PubMed - indexed for MEDLINE]

Related citations

Miller RL, James-Kracke M, Sun GY, Sun AY.
PMID: 18363100 [PubMed - indexed for MEDLINE]

Related citations

609. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson's disease.
Drechsel DA, Patel M.

Related citations

610. Advanced glycation end products induce in vitro cross-linking of alpha-synuclein and accelerate the process of intracellular inclusion body formation.
Shaikh S, Nicholson LF.
Mechanisms of DJ-1 neuroprotection in a cellular model of Parkinson's disease.
Liu F, Nguyen JL, Hulleman JD, Li L, Rochet JC.
PMID: 18331584 [PubMed - indexed for MEDLINE]

Sanz E, Quintana A, Battaglia V, Toninello A, Hidalgo J, Ambrosio S, Valoti M, Marco JL, Tipton KF, Unzeta M.
PMID: 18331475 [PubMed - indexed for MEDLINE]

Investigating convergent actions of genes linked to familial Parkinson's disease.
Wolozin B, Saha S, Guillily M, Ferree A, Riley M.

Alpha-synuclein, pesticides, and Parkinson disease: a case-control study.
Brighina L, Frigerio R, Schneider NK, Lesnick TG, de Andrade M, Cunningham JM, Farrer MJ, Lincoln SJ, Checkoway H, Rocca WA, Maraganore DM.
PMID: 18322262 [PubMed - indexed for MEDLINE]

Response to "Paraquat: the red herring of Parkinson's disease research".
LoPachin RM, Gavin T.

Behavioral alterations in rotenone model of Parkinson's disease: attenuation by co-treatment of centrophenoxine.
Nehru B, Verma R, Khanna P, Sharma SK.
PMID: 18308296 [PubMed - indexed for MEDLINE]
Related citations
617. Association between parkinsonism and participation in agriculture in Korea.
Cho JW, Jeon BS, Jeong D, Choi YJ, Lee JY, Lee HS, Hong SY.
Related citations
618. Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian rats.
Lin CH, Huang JY, Ching CH, Chuang JI.
PMID: 18289173 [PubMed - indexed for MEDLINE]
Related citations
619. Maneb potentiates paraquat neurotoxicity by inducing key Bcl-2 family members.
Fei Q, Ethell DW.
PMID: 18266926 [PubMed - indexed for MEDLINE]
Related citations
620. Silencing of peroxiredoxin 3 and peroxiredoxin 5 reveals the role of mitochondrial peroxiredoxins in the protection of human neuroblastoma SH-SY5Y cells toward MPP+.
De Simoni S, Goemaere J, Knoops B.
PMID: 18262354 [PubMed - indexed for MEDLINE]
Related citations
621. Neuroprotective effect of the natural iron chelator, phytic acid in a cell culture model of Parkinson's disease.
Xu Q, Kanthasamy AG, Reddy MB.
PMID: 18255213 [PubMed - indexed for MEDLINE]
Related citations
Yang W, Tiffany-Castiglioni E.
PMID: 18253895 [PubMed - indexed for MEDLINE]
Related citations
623. Magnesium exerts both preventive and ameliorating effects in an in vitro rat Parkinson disease model involving 1-methyl-4-phenylpyridinium (MPP+) toxicity in dopaminergic neurons.
Hashimoto T, Nishi K, Nagasao J, Tsuji S, Oyanagi K.
PMID: 18242592 [PubMed - indexed for MEDLINE]
Related citations

624. D2/D3 receptor agonist ropinirole protects dopaminergic cell line against rotenone-induced apoptosis through inhibition of caspase- and JNK-dependent pathways.
Chen S, Zhang X, Yang D, Du Y, Li L, Li X, Ming M, Le W.
PMID: 18242171 [PubMed - indexed for MEDLINE]
Related citations

625. Effects of the extract of Anemopaegma mirandum (Catuaba) on Rotenone-induced apoptosis in human neuroblastomas SH-SY5Y cells.
Valverde G De Andrade D, Madureira de Oliveria D, Barreto G, Bertolino LA, Saraceno E, Capani F, Giraldez LD.
PMID: 18241847 [PubMed - indexed for MEDLINE]
Related citations

626. Protective effects of a new metalloporphyrin on paraquat-induced oxidative stress and apoptosis in N27 cells.
Related citations

627. Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases.
Nunomura A, Moreira PI, Lee HG, Zhu X, Castellani RJ, Smith MA, Perry G.
PMID: 18220780 [PubMed - indexed for MEDLINE]
Related citations

Wimalasena DS, Perera RP, Heyen BJ, Balasooriya IS, Wimalasena K.
PMID: 18220329 [PubMed - indexed for MEDLINE]
Related citations
629. **Protection by the NDI1 gene against neurodegeneration in a rotenone rat model of Parkinson's disease.**
Marella M, Seo BB, Nakamaru-Ogiso E, Greenamyre JT, Matsumo-Yagi A, Yagi T.
Related citations

630. **Sequential and concerted gene expression changes in a chronic in vitro model of parkinsonism.**
Greene JG, Greenamyre JT, Dingedline R.
Related citations

631. **Up-regulation of divalent metal transporter 1 is involved in 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells.**
Zhang S, Wang J, Song N, Xie J, Jiang H.
PMID: 18191877 [PubMed - indexed for MEDLINE]
Related citations

632. **Inflammatory priming of the substantia nigra influences the impact of later paraquat exposure: Neuroimmune sensitization of neurodegeneration.**
Mangano EN, Hayley S.
PMID: 18187236 [PubMed - indexed for MEDLINE]
Related citations

633. **Letter regarding: "Paraquat: the red herring of Parkinson's disease research".**
Cory-Slechta DA, Thiruchelvam M, Di Monte DA.
Related citations

634. **Trichloroethylene: Parkinsonism and complex 1 mitochondrial neurotoxicity.**
PMID: 18157908 [PubMed - indexed for MEDLINE]
Related citations
635. The exploration of rotenone as a toxin for inducing Parkinson's disease in rats, for application in BBB transport and PK-PD experiments.
PMID: 18155613 [PubMed - indexed for MEDLINE]
Related citations

636. Oxidative stress on EAAC1 is involved in MPTP-induced glutathione depletion and motor dysfunction.
Aoyama K, Matsumura N, Watabe M, Nakaki T.
PMID: 18093171 [PubMed - indexed for MEDLINE]
Related citations

637. Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1.
Teixeira MC, Dias PJ, Simões T, Sá-Correia I.
PMID: 18086556 [PubMed - indexed for MEDLINE]
Related citations

638. Comparison of the time courses of selective gene expression and dopaminergic depletion induced by MPP+ in MN9D cells.
Wang J, Duhart HM, Xu Z, Patterson TA, Newport GD, Ali SF.
PMID: 18069091 [PubMed - indexed for MEDLINE]
Related citations

639. The experimental models of Parkinson's disease in animals.
Grigor'ian GA, Bazian AS.
PMID: 18064910 [PubMed - indexed for MEDLINE]
Related citations

640. Paraquat neurotoxicity is mediated by a Bak-dependent mechanism.
Fei Q, McCormack AL, Di Monte DA, Ethell DW.
Related citations

641. A cell-permeable peptide inhibitor TAT-JBD reduces the MPP+-induced caspase-9 activation but does not prevent the dopaminergic degeneration in substantia nigra of rats.

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations

109
PMID: 17982879 [PubMed - indexed for MEDLINE]
Related citations

Costa LG, Giordano G, Guizzetti M, Vitalone A.
PMID: 17981626 [PubMed - indexed for MEDLINE]
Related citations

649. Prolonged toxicokinetics and toxicodynamics of paraquat in mouse brain.
Prasad K, Winnik B, Thiruchelvam MJ, Buckley B, Mirochnitchenko O, Richfield EK.
Related citations

650. Neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) on paraquat-induced apoptosis in PC12 cells.
Hou RR, Chen JZ, Chen H, Kang XG, Li MG, Wang BR.
PMID: 17936647 [PubMed - indexed for MEDLINE]
Related citations

651. Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson's disease: a dynamic model.
PMID: 17936517 [PubMed - indexed for MEDLINE]
Related citations

652. The bipyridyl herbicide paraquat induces proteasome dysfunction in human neuroblastoma SH-SY5Y cells.
Yang W, Tiffany-Castiglioni E.
PMID: 17934957 [PubMed - indexed for MEDLINE]
Related citations

653. Paraquat: the red herring of Parkinson's disease research.
Miller GW.
Related citations

654. Dopaminergic neurons are preferentially sensitive to long-term rotenone toxicity in primary cell culture.

655. Dopamine induces TNFalpha and TNF-R1 expression in SH-SY5Y human neuroblastoma cells.

656. Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+) -induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells.

658. Epigallocatechin gallate (EGCG) potentiates the cytotoxicity of rotenone in neuroblastoma SH-SY5Y cells.

659. Chronic inhalation of rotenone or paraquat does not induce Parkinson's disease symptoms in mice or rats.

661. Bioenergetic and oxidative effects of free 3-nitrotyrosine in culture: selective vulnerability of dopaminergic neurons and increased sensitivity of non-dopaminergic neurons to dopamine oxidation.
Ma TC, Mihm MJ, Bauer JA, Hoyt KR.
PMID: 17877636 [PubMed - indexed for MEDLINE]

662. Risk factors for Parkinson's disease and impaired olfaction in relatives of patients with Parkinson's disease.
Siderowf A, Jennings D, Connolly J, Doty RL, Marek K, Stern MB.
PMID: 17876851 [PubMed - indexed for MEDLINE]

663. Pathogenesis of Parkinson disease.
Takeuchi H, Takahashi R.
PMID: 17853535 [PubMed - indexed for MEDLINE]

664. Paraquat induces dopaminergic dysfunction and proteasome impairment in DJ-1-deficient mice.
Yang W, Chen L, Ding Y, Zhuang X, Kang UJ.

Edwards TM, Myers JP.
Environ Health Perspect. 2007 Sep;115(9):1264-70. Review.

666. Role of lipoamide dehydrogenase and metallothionein on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.
Dhanasekaran M, Albano CB, Pellet L, Karuppagounder SS, Uthayathas S, Suppiramaniam V, Brown-Borg H, Ebadi M.
PMID: 17768676 [PubMed - indexed for MEDLINE]
667. Mitochondrial complex I inhibitor rotenone-elicited dopamine redistribution from vesicles to cytosol in human dopaminergic SH-SY5Y cells.
Watabe M, Nakaki T.
Related citations

668. Overexpressed alpha-synuclein regulated the nuclear factor-kappaB signal pathway.
PMID: 17712623 [PubMed - indexed for MEDLINE]
Related citations

669. Parkinson's disease and rural environment.
Elbaz A.
PMID: 17708091 [PubMed - indexed for MEDLINE]
Related citations

670. Subchronic intoxication with chlorfenvinphos, an organophosphate insecticide, affects rat brain antioxidative enzymes and glutathione level.
Lukaszewicz-Hussain A.
PMID: 17706853 [PubMed - indexed for MEDLINE]
Related citations

671. Identification of novel proteins affected by rotenone in mitochondria of dopaminergic cells.
Jin J, Davis J, Zhu D, Kashima DT, Leroueil M, Pan C, Montine KS, Zhang J.
Related citations

672. Neuroinflammation in Alzheimer's disease and Parkinson's disease: are microglia pathogenic in either disorder?
Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A.
PMID: 17678964 [PubMed - indexed for MEDLINE]
Related citations

673. Epidemiologic studies of environmental exposures in Parkinson's disease.
Elbaz A, Tranchant C.
PMID: 17673256 [PubMed - indexed for MEDLINE]
674. **Cytotoxicity of paraquat in microglial cells: Involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase.**
Miller RL, Sun GY, Sun AY.

675. **Melatonin inhibits MPP+-induced caspase-mediated death pathway and DNA fragmentation factor-45 cleavage in SK-N-SH cultured cells.**
Chetsawang J, Govitrapong P, Chetsawang B.
PMID: 17645689 [PubMed - indexed for MEDLINE]

676. **[Protecting effect of Cistanche extracts on MPP+-induced injury of the Parkinson's disease cell model].**
Wang H, Li WW, Cai DF, Yang R.

677. **Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death.**
Chu CT, Zhu J, Dagda R.

678. **Protective effect of erythropoietin against 1-methyl-4-phenylpyridinium-induced neurodegeneration in PC12 cells.**
Wu Y, Shang Y, Sun SG, Liu RG, Yang WQ.
Neurosci Bull. 2007 May;23(3):156-64.
PMID: 17612594 [PubMed - indexed for MEDLINE]

679. **Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone.**
Yadava N, Nicholls DG.

680. **Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson's disease**
accelerate age-related neurodegeneration.

681. **Rotenone selectively kills serotonergic neurons through a microtubule-dependent mechanism.**

682. **Epidemiology of Parkinson's disease.**

683. **Unique responses to mitochondrial complex I inhibition in tuberoinfundibular dopamine neurons may impart resistance to toxic insult.**

684. **Astrocytes protect MN9D neuronal cells against rotenone-induced oxidative stress by a glutathione-dependent mechanism.**

685. **Is Parkinson's disease an autoimmune disorder of endogenous vasoactive neuropeptides?**

686. **Rotenone potentiates NMDA currents in substantia nigra dopamine neurons.**
Related citations

687. Rejuvenation protects neurons in mouse models of Parkinson's disease.
Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ.
PMID: 17558391 [PubMed - indexed for MEDLINE]
Related citations

Singh C, Ahmad I, Kumar A.
PMID: 17543230 [PubMed - indexed for MEDLINE]
Related citations

689. Impaired mutagenic activities of MPDP(+) (1-methyl-4-phenyl-2,3-dihydropyridinium) and MPP(+) (1-methyl-4-phenylpyridinium) due to their interactions with methylxanthines.
Ulanowska K, Piosik J, Gwizdek-Wiśniewska A, Wegrzyn G.
PMID: 17533133 [PubMed - indexed for MEDLINE]
Related citations

690. Identification of differentially expressed proteins in striatum of mane and paraquat-induced Parkinson's disease phenotype in mouse.
Patel S, Sinha A, Singh MP.
PMID: 17532186 [PubMed - indexed for MEDLINE]
Related citations

691. Functional ryanodine receptors are expressed by human microglia and THP-1 cells: Their possible involvement in modulation of neurotoxicity.
Klegeris A, Choi HB, McLarnon JG, McGeer PL.
PMID: 17526017 [PubMed - indexed for MEDLINE]
Related citations

692. Developmental exposure to pesticides zineb and/or endosulfan renders the nigrostriatal dopamine system more susceptible to these environmental chemicals later in life.
Jia Z, Misra HP.
PMID: 17512982 [PubMed - indexed for MEDLINE]
Related citations

693. Protective effects of Ginkgo biloba extract on paraquat-induced apoptosis of PC12 cells.
Kang X, Chen J, Xu Z, Li H, Wang B.
Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3beta/caspase-3 mediated signaling pathway.

Interaction between genes and environment in neurodegenerative diseases.

Elbaz A, Dufouil C, Alpérovitch A.

Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats.

Pesticide exposure might be a strong risk factor for Parkinson's disease.

Baldereschi M, Inzitari M, Vanni P, Di Carlo A, Inzitari D.

Rotenone-induced neurotoxicity of THP-1 cells requires production of reactive oxygen species and activation of phosphatidylinositol 3-kinase.

Hu JH, Zhu XZ.

Scleroderma-like lesions and Parkinson's disease: possible links with exposure to pesticides.

Stinco G, Piccirillo F, de Francesco V, Patrone P.

Gene expression profiling of MPP+-treated MN9D cells: a mechanism of toxicity study.

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations
706. **Mangiferin protects against 1-methyl-4-phenylpyridinium toxicity mediated by oxidative stress in N2A cells.**
 Amazzal L, Lapôtre A, Quignon F, Bagrel D.
 PMID: 17433543 [PubMed - indexed for MEDLINE]
 Related citations

707. **1-methyl-4-phenylpyridinium-induced alterations of glutathione status in immortalized rat dopaminergic neurons.**
 Drechsel DA, Liang LP, Patel M.
 Related citations

708. **Biphasic mechanism of the toxicity induced by 1-methyl-4-phenylpyridinium ion (MPP+) as revealed by dynamic changes in glucose metabolism in rat brain slices.**
 Maruoka N, Murata T, Omata N, Takashima Y, Fujibayashi Y, Wada Y.
 PMID: 17391768 [PubMed - indexed for MEDLINE]
 Related citations

709. **Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain.**
 Castello PR, Drechsel DA, Patel M.
 Related citations

710. **The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats.**
 Samantaray S, Knaryan VH, Guyton MK, Matzelle DD, Ray SK, Banik NL.
 Related citations

711. **Antioxidant effect of erythropoietin on 1-methyl-4-phenylpyridinium-induced neurotoxicity in PC12 cells.**
 Wu Y, Shang Y, Sun S, Liu R.
 PMID: 17362920 [PubMed - indexed for MEDLINE]
 Related citations

712. **The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease.**
 Höglinger GU, Breunig JJ, Depboylu C, Rouaux C, Michel PP, Alvarez-Fischer D,

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations

719. Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells.
Related citations

Related citations

721. Does ORP150/HSP12A protect dopaminergic neurons against MPTP/MPP(+)–induced neurotoxicity?
Kitao Y, Matsuyama T, Takano K, Tabata Y, Yoshimoto T, Momoi T, Yamatodani A, Ogawa S, Hori O.
Antioxid Redox Signal. 2007 May;9(5):589-95.
PMID: 17330988 [PubMed - indexed for MEDLINE]
Related citations

722. Activation of c-Jun N-terminal protein kinase is a common mechanism underlying paraquat- and rotenone-induced dopaminergic cell apoptosis.
Klintworth H, Newhouse K, Li T, Choi WS, Faigle R, Xia Z.
Related citations

723. Exposure to mixtures of endosulfan and zineb induces apoptotic and necrotic cell death in SH-SY5Y neuroblastoma cells, in vitro.
Jia Z, Misra HP.
PMID: 17309119 [PubMed - indexed for MEDLINE]
Related citations

724. Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system.
Hatcher JM, Richardson JR, Guillot TS, McCormack AL, Di Monte DA, Jones DP, Pennell
KD, Miller GW.

Related citations

725. **1-Methyl-4-phenylpyridinium induces synaptic dysfunction through a pathway involving caspase and PKCdelta enzymatic activities.**

Serulle Y, Morfini G, Pigino G, Moreira JE, Sugimori M, Brady ST, Llinás RR.

Related citations

726. **1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C.**

Related citations

727. **Melatonin inhibits maneb-induced aggregation of alpha-synuclein in rat pheochromocytoma cells.**

Ishido M.
PMID: 17286743 [PubMed - indexed for MEDLINE] Related citations

728. **Rifampicin protects PC12 cells against MPP+-induced apoptosis and inhibits the expression of an alpha-Synuclein multimer.**

Xu J, Wei C, Xu C, Bennett MC, Zhang G, Li F, Tao E.
PMID: 17280646 [PubMed - indexed for MEDLINE] Related citations

729. **Alpha-synuclein and tyrosine hydroxylase expression in acute rotenone toxicity.**

Luo C, Rajput AH, Akhtar S, Rajput A.
PMID: 17273802 [PubMed - indexed for MEDLINE] Related citations

730. **Rosiglitazone protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity via inhibition of mitochondrial dysfunction and ROS production.**

Jung TW, Lee JY, Shim WS, Kang ES, Kim SK, Ahn CW, Lee HC, Cha BS.
PMID: 17266988 [PubMed - indexed for MEDLINE]
731. 7-nitroindazole protects striatal dopaminergic neurons against MPP+-induced degeneration: an in vivo microdialysis study.
Di Matteo V, Benigno A, Pierucci M, Giuliani DA, Crescimanno G, Esposito E, Di Giovanni G.
PMID: 17261789 [PubMed - indexed for MEDLINE]

Norris EH, Uryu K, Leight S, Giasson BI, Trojanowski JQ, Lee VM.

733. Parkinson's disease and pesticide exposures.
Dick FD.
PMID: 17242039 [PubMed - indexed for MEDLINE]

734. Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson's disease.
Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT.
PMID: 17241123 [PubMed - indexed for MEDLINE]

735. SAG protects human neuroblastoma SH-SY5Y cells against 1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicity via the downregulation of ROS generation and JNK signaling.
Kim SY, Kim MY, Mo JS, Park JW, Park HS.
PMID: 17240529 [PubMed - indexed for MEDLINE]

736. Nicotine partially protects against paraquat-induced nigrostriatal damage in mice; link to alpha6beta2* nAChRs.
Khwaja M, McCormack A, McIntosh JM, Di Monte DA, Quik M.
PMID: 17227438 [PubMed - indexed for MEDLINE]
737. **Dopaminergic toxicity of the herbicide atrazine in rat striatal slices.**
Filipov NM, Stewart MA, Carr RL, Sistrunk SC.
PMID: 17218051 [PubMed - indexed for MEDLINE] [Free PMC Article]
Related citations

738. **Alkyl succinate poisoning.**
Raj M, Subrahmanyam DK, Agrawal A, Sethuraman KR.
PMID: 17214284 [PubMed - indexed for MEDLINE]
Related citations

739. **Mitochondrial avid radioprobes. Preparation and evaluation of 7'(Z)-[125I]iodorotenone and 7'(Z)-[125I]iodorotenol.**
VanBrocklin HF, Hanrahan SM, Enas JD, Nandanan E, O'Neil JP.
PMID: 17210467 [PubMed - indexed for MEDLINE] [Free PMC Article]
Related citations

740. **Herbicide exposure modifies GSTP1 haplotype association to Parkinson onset age: the GenePD Study.**
PMID: 17190945 [PubMed - indexed for MEDLINE]
Related citations

741. **Pesticide exposure on southwestern Taiwanese with MnSOD and NQO1 polymorphisms is associated with increased risk of Parkinson's disease.**
Fong CS, Wu RM, Shieh JC, Chao YT, Fu YP, Kuao CL, Cheng CW.
PMID: 17188257 [PubMed - indexed for MEDLINE]
Related citations

742. **Chronic rotenone treatment induces behavioral effects but no pathological signs of parkinsonism in mice.**
Richter F, Hamann M, Richter A.
PMID: 17171705 [PubMed - indexed for MEDLINE]
Related citations
743. **Mortality among a cohort of banana plantation workers in Costa Rica.**
Hofmann J, Guardado J, Keifer M, Wesseling C.
PMID: 17168219 [PubMed - indexed for MEDLINE]
Related citations

744. **Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration.**
Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA.
Related citations

745. **Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids.**
PMID: 17140720 [PubMed - indexed for MEDLINE]
Related citations

746. **RNA interference-mediated knockdown of alpha-synuclein protects human dopaminergic neuroblastoma cells from MPP(+) toxicity and reduces dopamine transport.**
Fountaine TM, Wade-Martins R.
PMID: 17131421 [PubMed - indexed for MEDLINE]
Related citations

747. **Pesticides and impairment of mitochondrial function in relation with the parkinsonian syndrome.**
Gomez C, Bandez MJ, Navarro A.
PMID: 17127363 [PubMed - indexed for MEDLINE]
Related citations

748. **Mitochondrial toxins and neurodegenerative diseases.**
Ayala A, Venero JL, Cano J, Machado A.
PMID: 17127354 [PubMed - indexed for MEDLINE]
Related citations

749. **Plasma concentration of organochlorine compounds is associated with age and not obesity.**
750. **Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity.**
Leung KW, Yung KK, Mak NK, Chan YS, Fan TP, Wong RN.
PMID: 17123556 [PubMed-indexed for MEDLINE]

751. **Geographic model and biomarker-derived measures of pesticide exposure and Parkinson's disease.**
Ritz B, Costello S.

752. **Pesticide exposure and self-reported Parkinson's disease in the agricultural health study.**

753. **An in vitro model of human dopaminergic neurons derived from embryonic stem cells: MPP+ toxicity and GDNF neuroprotection.**
Zeng X, Chen J, Deng X, Liu Y, Rao MS, Cadet JL, Freed WJ.

754. **L-carnitine protects neurons from 1-methyl-4-phenylpyridinium-induced neuronal apoptosis in rat forebrain culture.**
PMID: 17084538 [PubMed-indexed for MEDLINE]

755. **Microtubule: a common target for parkin and Parkinson's disease toxins.**
Feng J.
PMID: 17079513 [PubMed-indexed for MEDLINE]

756. **Mitochondrial damage modulates alternative splicing in neuronal cells: implications for neurodegeneration.**
PMID: 17064354 [PubMed - indexed for MEDLINE]

757. **Carnosol, a component of rosemary (Rosmarinus officinalis L.) protects nigral dopaminergic neuronal cells.**
PMID: 17047462 [PubMed - indexed for MEDLINE]

758. **Parkinson's disease in relation to pesticide exposure and nuclear encoded mitochondrial complex I gene variants.**
Corder EH, Mellick GD.

759. **Occupational titles as risk factors for Parkinson's disease.**
Dick S, Semple S, Dick F, Seaton A.

760. **A novel peptide inhibitor targeted to caspase-3 cleavage site of a proapoptotic kinase protein kinase C delta (PKCdelta) protects against dopaminergic neuronal degeneration in Parkinson's disease models.**
PMID: 17045926 [PubMed - indexed for MEDLINE]

761. **Chemical genomic profiling for identifying intracellular targets of toxicants producing Parkinson's disease.**
Doostzadeh J, Davis RW, Giaever GN, Nislow C, Langston JW.

762. **Differential effect of nerve growth factor on dopaminergic neurotoxin-induced apoptosis.**

763. Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: oxidation of thioredoxin and caspase-3 activation.

764. Controversies on new animal models of Parkinson's disease pro and con: the rotenone model of Parkinson's disease (PD).

765. The rotenone model of parkinsonism--the five years inspection.

767. CYP450, genetics and Parkinson's disease: gene x environment interactions hold the key.

768. Nongenetic causes of Parkinson's disease.

769. Mitochondria mass is low in mouse substantia nigra dopamine neurons: implications for
Related citations

770. **Inhibition of aldehyde detoxification in CNS mitochondria by fungicides.**

Leiphon LJ, Picklo MJ Sr.

PMID: 17010440 [PubMed - indexed for MEDLINE]

771. **RTP801 is elevated in Parkinson brain substantia nigral neurons and mediates death in cellular models of Parkinson's disease by a mechanism involving mammalian target of rapamycin inactivation.**

Malagelada C, Ryu EJ, Biswas SC, Jackson-Lewis V, Greene LA.

772. **Dopamine D2 agonists, bromocriptine and quinpirole, increase MPP+ -induced toxicity in PC12 cells.**

Chiasson K, Daoust B, Levesque D, Martinoli MG.

PMID: 17000468 [PubMed - indexed for MEDLINE]

773. **The neurotoxin, MPP+, induces hyperphosphorylation of Tau, in the presence of alpha-Synuclein, in SH-SY5Y neuroblastoma cells.**

Duka T, Sidhu A.

PMID: 17000465 [PubMed - indexed for MEDLINE]

774. **VIP is a transcriptional target of Nurr1 in dopaminergic cells.**

Luo Y, Henricksen LA, Giuliano RE, Prifti L, Callahan LM, Federoff HJ.

PMID: 16999955 [PubMed - indexed for MEDLINE]

775. **Neuroprotective effects of the stable nitroxide compound Tempol on 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in the Nerve Growth Factor-differentiated model of pheochromocytoma PC12 cells.**

Lipman T, Tabakman R, Lazarovici P.
Induction of parkin expression in the presence of oxidative stress.
Yang YX, Muqit MM, Latchman DS.
PMID: 16987221 [PubMed - indexed for MEDLINE]

5' and 3' region variability in the dopamine transporter gene (SLC6A3), pesticide exposure and Parkinson's disease risk: a hypothesis-generating study.
PMID: 16963468 [PubMed - indexed for MEDLINE]

PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model.
PMID: 16962931 [PubMed - indexed for MEDLINE]

Environmental determinants of Parkinson's disease.
Wright JM, Keller-Byrne J.
PMID: 16961006 [PubMed - indexed for MEDLINE]

Distinct effects of atypical 1,4-dihydropyridines on 1-methyl-4-phenylpyridinium-induced toxicity.
PMID: 16927412 [PubMed - indexed for MEDLINE]

D-beta-hydroxybutyrate protects dopaminergic SH-SY5Y cells in a rotenone model of Parkinson's disease.
Imamura K, Takeshima T, Kashiwaya Y, Nakaso K, Nakashima K.
782. **Caenorhabditis elegans MPP+ model of Parkinson's disease for high-throughput drug screenings.**
 Braungart E, Gerlach M, Riederer P, Baumeister R, Hoener MC.
 PMID: 16908987 [PubMed-indexed for MEDLINE]
 Related citations

783. **Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging.**
 Meulener MC, Xu K, Thomson L, Ischiropoulos H, Bonini NM.
 Related citations

784. **Temporal effects of paraquat/maneb on microglial activation and dopamine neuronal loss in older rats.**
 Saint-Pierre M, Tremblay ME, Sik A, Gross RE, Cicchetti F.
 PMID: 16893418 [PubMed-indexed for MEDLINE]
 Related citations

785. **Acute neurotoxic effects of mancozeb and maneb in mesencephalic neuronal cultures are associated with mitochondrial dysfunction.**
 Domico LM, Zeevalk GD, Bernard LP, Cooper KR.
 PMID: 16889834 [PubMed-indexed for MEDLINE]
 Related citations

786. **Neurotrophic factors stabilize microtubules and protect against rotenone toxicity on dopaminergic neurons.**
 Jiang Q, Yan Z, Feng J.
 Related citations

787. **The role of tissue transglutaminase in 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity in differentiated human SH-SY5Y neuroblastoma cells.**
 Beck KE, De Girolamo LA, Griffin M, Billett EE.
788. **Geographic isolates of atypical Parkinsonism and tauopathy in the tropics: possible synergy of neurotoxins.**
Caparros-Lefebvre D, Steele J, Kotake Y, Ohta S.
PMID: 16874753 [PubMed-indexed for MEDLINE]
Related citations

789. **Cytotoxicity of chloral-derived beta-carbolines is not specific towards neuronal nor dopaminergic cells.**
Storch A, Hwang YI, Bringmann G, Feineis D, Ott S, Brückner R, Schwarz J.
PMID: 16868795 [PubMed-indexed for MEDLINE]
Related citations

790. **Identification of novel proteins associated with both alpha-synuclein and DJ-1.**
Related citations

791. **Endotoxin, a possible agent in the causation of Parkinson's disease.**
Lange JH, Buja A, Mastrangelo G.
PMID: 16832216 [PubMed-indexed for MEDLINE]
Related citations

792. **Rats with unilateral median forebrain bundle, but not striatal or nigral, lesions by the neurotoxins MPP+ or rotenone display differential sensitivity to amphetamine and apomorphine.**
PMID: 16820197 [PubMed-indexed for MEDLINE]
Related citations

793. **Adaptive acetylcholinesterase splicing patterns attenuate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice.**
Ben-Shaul Y, Benmoyal-Segal L, Ben-Ari S, Bergman H, Soreq H.
PMID: 16819980 [PubMed-indexed for MEDLINE]
Related citations
Zhao FL, Hu JH, Zhu XZ.
Related citations

795. Paraquat exposure as an etiological factor of Parkinson's disease.
Dinis-Oliveira RJ, Remião F, Carmo H, Duarte JA, Navarro AS, Bastos ML, Carvalho F.
Related citations

796. Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson's disease.
Richardson JR, Caudle WM, Wang M, Dean ED, Pennell KD, Miller GW.
PMID: 16809432 [PubMed - indexed for MEDLINE] Free Article
Related citations

797. Protocatechuic acid suppresses MPP+ -induced mitochondrial dysfunction and apoptotic cell death in PC12 cells.
Guan S, Jiang B, Bao YM, An LJ.
Related citations

798. Enhancement of tyrosine hydroxylase expression and activity by Trypanosoma cruzi parasite-derived neurotrophic factor.
Chuenkova MV, Pereiraperrin M.
Related citations

Benmoyal-Segal L, Soreq H.
Related citations

800. Pesticide exposure and risk for Parkinson's disease.
Ascherio A, Chen H, Weisskopf MG, O'Reilly E, McCullough ML, Calle EE, Schwarzschild
801. Degeneration of dopaminergic mesocortical neurons and activation of compensatory processes induced by a long-term paraquat administration in rats: implications for Parkinson's disease.
PMID: 16797138 [PubMed - indexed for MEDLINE]
Related citations

802. Chemical exposures and Parkinson's disease: a population-based case-control study.
PMID: 16773614 [PubMed - indexed for MEDLINE]
Related citations

803. Transduced Tat-alpha-synuclein protects against oxidative stress in vitro and in vivo.
Related citations

804. Potentiating effect of the ATP-sensitive potassium channel blocker glibenclamide
on complex I inhibitor neurotoxicity in vitro and in vivo.
Kou J, Klorig DC, Bloomquist JR.
PMID: 16725203 [PubMed - indexed for MEDLINE]
Related citations

Soderstrom K, O'Malley J, Steece-Collier K, Kordower JH.
PMID: 16719060 [PubMed - indexed for MEDLINE]
Related citations

806. Progressive dopamine neuron loss in Parkinson's disease: the multiple hit hypothesis.
Carvey PM, Punati A, Newman MB.
PMID: 16719059 [PubMed - indexed for MEDLINE]
Related citations

Related citations

808. Heat shock proteins reduce alpha-
synuclein aggregation induced by MPP+ in SK-N-SH cells.

Fan GH, Zhou HY, Yang H, Chen SD.
Epub 2006 Apr 27.
PMID: 16678164 [PubMed - indexed for MEDLINE]

Related citations

809. Reactive microgliosis participates in MPP+-induced dopaminergic neurodegeneration: role of 67 kDa laminin receptor.
Wang T, Zhang W, Pei Z, Block M, Wilson B, Reece JM, Miller DS, Hong JS.
Related citations

810. Neurotoxic effect of maneb in rats as studied by neurochemical and immunohistochemical parameters.
Nielsen BS, Larsen EH, Ladefoged O, Lam HR.
PMID: 21783668 [PubMed]
Related citations

811. Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase pathways.
Hsuan SL, Klintworth HM, Xia Z.
Related citations

812. Inhibitory effects of pesticides on
proteasome activity: implication in Parkinson's disease.
Related citations

813. Activation of group III metabotropic glutamate receptors attenuates rotenone toxicity on dopaminergic neurons through a microtubule-dependent mechanism.
Related citations

Related citations

815. Organochlorine pesticide exposure in essential tremor: a case-control study using biological and occupational exposure assessments.
Related citations

816. Proteasomal inhibition hypersensitizes
differentiated neuroblastoma cells to oxidative damage.
Lev N, Melamed E, Offen D.
PMID: 16584840 [PubMed - indexed for MEDLINE]

Related citations

817. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration.
Radad K, Rausch WD, Gille G.
PMID: 16580092 [PubMed - indexed for MEDLINE]

Related citations

818. The potentiating effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on paraquat-induced neurochemical and behavioral changes in mice.
PMID: 16580056 [PubMed - indexed for MEDLINE]

Related citations

819. Chromatographic analysis of dopamine metabolism in a Parkinsonian model.
Baranyi M, Milusheva E, Vizi ES, Sperlágh B.
PMID: 16580006 [PubMed - indexed for MEDLINE]

Related citations

820. Identification of rotenone-induced
modifications in alpha-synuclein using affinity pull-down and tandem mass spectrometry.
Mirzaei H, Schieler JL, Rochet JC, Regnier F.
PMID: 16579629 [PubMed - indexed for MEDLINE]
Related citations

821. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline.
Casarejos MJ, Menéndez J, Solano RM, Rodríguez-Navarro JA, García de Yébenes J, Mena MA.
PMID: 16573651 [PubMed - indexed for MEDLINE]
Related citations

Related citations

823. Adiponectin protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity.
Jung TW, Lee JY, Shim WS, Kang ES, Kim JS, Ahn CW, Lee HC, Cha BS.
PMID: 16554029 [PubMed - indexed for MEDLINE]
Related citations

824. Curcumin protects PC12 cells against 1-
methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway.

Related citations

825. Rat model of Parkinson's disease: chronic central delivery of 1-methyl-4-phenylpyridinium (MPP+).

Related citations

826. In vivo complementation of complex I by the yeast Ndi1 enzyme. Possible application for treatment of Parkinson disease.

Related citations

827. Parkin protects against mitochondrial toxins and beta-amyloid accumulation in skeletal muscle cells.

Related citations
828. **Status of antioxidant defense system and expression of toxicant responsive genes in striatum of maneb- and paraquat-induced Parkinson's disease phenotype in mouse: mechanism of neurodegeneration.**
Patel S, Singh V, Kumar A, Gupta YK, Singh MP.
Epub 2006 Feb 28.
PMID: 16510128 [PubMed - indexed for MEDLINE]
Related citations

829. **Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson's disease.**
Alvira D, Tajes M, Verdaguer E, Acuña-Castroviejo D, Folch J, Camins A, Pallas M.
PMID: 16499562 [PubMed - indexed for MEDLINE]
Related citations

830. **L-deprenyl protects against rotenone-induced, oxidative stress-mediated dopaminergic neurodegeneration in rats.**
Saravanan KS, Sindhu KM, Senthilkumar KS, Mohanakumar KP.
Epub 2006 Feb 21.
PMID: 16490285 [PubMed - indexed for MEDLINE]
Related citations

831. **Enhanced sensitivity of dopaminergic neurons to rotenone-induced toxicity with aging.**
Phinney AL, Andringa G, Bol JG, Wolters ECh, van Muiswinkel FL, van Dam AM, Drukarch B.
PMID: 16488175 [PubMed - indexed for MEDLINE]
Related citations

832. 6-Hydroxydopamine but not 1-methyl-4-phenylpyridinium abolishes alpha-synuclein anti-apoptotic phenotype by inhibiting its proteasomal degradation and by promoting its aggregation.
Related citations

833. Nitric oxide and MPP+-induced hydroxyl radical generation.
Obata T.
J Neural Transm. 2006 Sep;113(9):1131-44. Epub 2006 Feb 6. Review.
PMID: 16463115 [PubMed - indexed for MEDLINE]
Related citations

834. Pesticides and Parkinson's disease--is there a link?
Brown TP, Rumsby PC, Capleton AC, Rushton L, Levy LS.
Environ Health Perspect. 2006 Feb;114(2):156-64. Review.
Related citations

835. Spatial test for agricultural pesticide "blow-in" effect on prevalence of Parkinson's disease.
Charles LE, Burchfiel CM, Fekedulegn D, Kashon ML, Ross GW, Petrovitch H, Sanderson WT.
PMID: 16439859 [PubMed - indexed for MEDLINE]

837. **Intersecting pathways to neurodegeneration in Parkinson's disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system.**
PMID: 16439141 [PubMed - indexed for MEDLINE]

838. **Early induction of calpains in rotenone-mediated neuronal apoptosis.**
Chen MJ, Yap YW, Choy MS, Koh CH, Seet SJ, Duan W, Whiteman M, Cheung NS.
PMID: 16412576 [PubMed - indexed for MEDLINE]

839. **Toxin-induced models of Parkinson's**
disease.
Related citations

840. Creatine supplementation improves dopaminergic cell survival and protects against MPP+ toxicity in an organotypic tissue culture system.
Related citations

841. [The role of environmental factors in Parkinson's disease may depend on disease onset age].
Related citations

842. 1-methyl-4-phenylpyridinium neurotoxicity is attenuated by adenoviral gene transfer of human Cu/Zn superoxide dismutase.
Related citations

843. Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells: implications for Parkinson's disease.
Choi HJ, Lee SY, Cho Y, No H, Kim SW, Hwang O.
PMID: 16343695 [PubMed - indexed for MEDLINE]

Related citations

844. Acetylsalicylic acid and acetaminophen protect against MPP+-induced mitochondrial damage and superoxide anion generation.
Maharaj H, Maharaj DS, Daya S.
PMID: 16318861 [PubMed - indexed for MEDLINE]

Related citations

845. Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells.
Pan T, Li X, Xie W, Jankovic J, Le W.
PMID: 16313906 [PubMed - indexed for MEDLINE]

Related citations

846. Epidemiological evidence on multiple system atrophy.
Vanacore N.
PMID: 16284906 [PubMed - indexed for MEDLINE]

Related citations

847. Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function.
The bipyridyl herbicide paraquat produces oxidative stress-mediated toxicity in human neuroblastoma SH-SY5Y cells: relevance to the dopaminergic pathogenesis.
Yang W, Tiffany-Castiglioni E.
PMID: 16263688 [PubMed-indexed for MEDLINE]

The regulation of rotenone-induced inflammatory factor production by ATP-sensitive potassium channel expressed in BV-2 cells.
PMID: 16257489 [PubMed-indexed for MEDLINE]

Parkinson's disease in diphenyl-exposed workers—a causal association?
Wastensson G, Hagberg S, Andersson E, Johnels B, Barregård L.
PMID: 16256410 [PubMed-indexed for MEDLINE]

Synergistic effect of alpha-dihydroyergocryptine and L-dopa or dopamine on dopaminergic neurons in primary culture.
Gille G, Radad K, Reichmann H, Rausch
Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion.

Rothenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication.

Systemic exposure to paraquat and maneb models early Parkinson's disease in young adult rats.

PMID: 16242641 [PubMed-indexed for MEDLINE]
Related citations

856. Heat shock proteins reduce toxicity of 1-methyl-4-phenylpyridinium ion in SK-N-SH cells.
Fan GH, Qi C, Chen SD.
PMID: 16235253 [PubMed - indexed for MEDLINE]
Related citations

857. Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells.
An LJ, Guan S, Shi GF, Bao YM, Duan YL, Jiang B.
PMID: 16223555 [PubMed - indexed for MEDLINE]
Related citations

858. The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy.
PMID: 16219024 [PubMed - indexed for MEDLINE]
Related citations

859. Evaluation of epidemiologic and animal
data associating pesticides with Parkinson's disease.
Li AA, Mink PJ, McIntosh LJ, Teta MJ, Finley B.
PMID: 16217247 [PubMed - indexed for MEDLINE]
Related citations

860. Heat shock proteins protect both MPP(+) and paraquat neurotoxicity.
Donaire V, Niso M, Morán JM, García L, González-Polo RA, Soler G, Fuentes JM.
PMID: 16216701 [PubMed - indexed for MEDLINE]
Related citations

861. Neuroprotective effects of Polygonum multiflorum on nigrostriatal dopaminergic degeneration induced by paraquat and maneb in mice.
Li X, Matsumoto K, Murakami Y, Tezuka Y, Wu Y, Kadota S.
PMID: 16214209 [PubMed - indexed for MEDLINE]
Related citations

862. Sepiapterin attenuates 1-methyl-4-phenylpyridinium-induced apoptosis in neuroblastoma cells transfected with neuronal NOS: role of tetrahydrobiopterin, nitric oxide, and proteasome activation.
Shang T, Kotamraju S, Zhao H, Kalivendi SV, Hillard CJ, Kalyanaraman B.
PMID: 16198233 [PubMed - indexed for MEDLINE]
863. **A slowly developing dysfunction of dopaminergic nigrostriatal neurons induced by long-term paraquat administration in rats: an animal model of preclinical stages of Parkinson's disease?**

PMID: 16190885 [PubMed - indexed for MEDLINE]

864. **Mechanism of 1-methyl-4-phenylpyridinium-induced dopamine release from PC12 cells.**

Chagkutip J, Govitrapong P, Klongpanichpak S, Ebadi M.

PMID: 16176067 [PubMed - indexed for MEDLINE]

865. **Paraquat induces selective dopaminergic nigrostriatal degeneration in aging C57BL/6 mice.**

Li X, Yin J, Cheng CM, Sun JL, Li Z, Wu YL.

866. **Apoptosis inducing factor mediates caspase-independent 1-methyl-4-phenylpyridinium toxicity in dopaminergic cells.**

867. **Effect of metals on herbicides-alpha-synuclein association: a possible factor in neurodegenerative disease studied by capillary electrophoresis.**
André C, Truong TT, Robert JF, Guillaume YC.
Electrophoresis. 2005 Sep;26(17):3256-64.
PMID: 16143978 [PubMed-indexed for MEDLINE]

868. **Paraquat neurotoxicity is distinct from that of MPTP and rotenone.**
Richardson JR, Quan Y, Sherer TB, Greenamyre JT, Miller GW.

869. **Developmental pesticide models of the Parkinson disease phenotype.**
Cory-Slechta DA, Thiruchelvam M, Barlow BK, Richfield EK.
Environ Health Perspect. 2005 Sep;113(9):1263-70.

870. **The role of early life environmental risk factors in Parkinson disease: what is the evidence?**
Logroscino G.
Environ Health Perspect. 2005 Sep;113(9):1234-8. Review.
871. **Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress.**
Menzies FM, Yenisetti SC, Min KT.
PMID: 16139214 [PubMed-indexed for MEDLINE]

872. **Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease.**
PMID: 16139213 [PubMed-indexed for MEDLINE]

873. **Proliferation of microglial cells induced by 1-methyl-4-phenylpyridinium in mesencephalic cultures results from an astrocyte-dependent mechanism: role of granulocyte macrophage colony-stimulating factor.**
Henze C, Hartmann A, Lescot T, Hirsch EC, Michel PP.
PMID: 16135085 [PubMed-indexed for MEDLINE]

874. **Effect of overexpression of wild-type or mutant parkin on the cellular response induced by toxic insults.**
Hyun DH, Lee M, Halliwell B, Jenner P.
PMID: 16130151 [PubMed-indexed for MEDLINE]

Related citations
875. **Promethazine protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity.**
Cleren C, Starkov AA, Calingasan NY, Lorenzo BJ, Chen J, Beal MF.
PMID: 16126396 [PubMed - indexed for MEDLINE]
Related citations

876. **A delivery strategy for rotenone microspheres in an animal model of Parkinson's disease.**
Epub 2005 Aug 22.
PMID: 16118017 [PubMed - indexed for MEDLINE]
Related citations

877. **Rotenone and CCCP inhibit tyrosine hydroxylation in rat striatal tissue slices.**
Hirata Y, Nagatsu T.
PMID: 16115719 [PubMed - indexed for MEDLINE]
Related citations

878. **Protective effect of melatonin on rotenone plus Ca2+-induced mitochondrial oxidative stress and PC12 cell death.**
Sousa SC, Castilho RF.
PMID: 16115015 [PubMed - indexed for MEDLINE]
Related citations

879. **Selective alterations of transcription factors in MPP+-induced neurotoxicity in PC12 cells.**

880. Perinatal heptachlor exposure increases expression of presynaptic dopaminergic markers in mouse striatum.

881. Dieldrin-induced neurotoxicity: relevance to Parkinson's disease pathogenesis.

882. The parkinsonism producing neurotoxin MPP+ affects microtubule dynamics by acting as a destabilising factor.

883. Increased nuclear factor-erythroid 2 p45-related factor 2 activity protects SH-SY5Y cells against oxidative damage.
884. Selective vulnerability of dopaminergic neurons to microtubule depolymerization.
Related citations

885. Synaptophysin enhances the neuroprotection of VMAT2 in MPP+-induced toxicity in MN9D cells.
PMID: 16023584 [PubMed-indexed for MEDLINE]
Related citations

886. Pig xenografts to the immunocompetent rat brain: Survival rates using distinct neurotoxic lesions in the nigrostriatal pathway and two rat strains.
PMID: 16022861 [PubMed-indexed for MEDLINE]
Related citations

PMID: 16008163 [PubMed-indexed for MEDLINE]
Related citations

888. Pesticides and Parkinson's disease.
Wu YR.
PMID: 16008160 [PubMed - indexed for MEDLINE]
Related citations
889. Increased sensitivity to MPTP in human alpha-synuclein A30P transgenic mice.
PMID: 16006012 [PubMed - indexed for MEDLINE]
Related citations
890. Pyrethroid pesticide-induced alterations in dopamine transporter function.
Elwan MA, Richardson JR, Guillot TS, Caudle WM, Miller GW.
PMID: 16005927 [PubMed - indexed for MEDLINE]
Related citations
891. PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone.
Wang G, Qi C, Fan GH, Zhou HY, Chen SD.
PMID: 16004991 [PubMed - indexed for MEDLINE]
Related citations
892. ATP-sensitive potassium channel opener iptakalim protected against the cytotoxicity of MPP+ on SH-SY5Y cells by decreasing extracellular glutamate level.
Hu LF, Wang S, Shi XR, Yao HH, Sun
YH, Ding JH, Liu SY, Hu G.
Epub 2005 Jul 5.
PMID: 16000145 [PubMed - indexed for MEDLINE]
Related citations

893. Dopaminergic neurotoxins require excitotoxic stimulation in organotypic cultures.
Kress GJ, Reynolds IJ.
Epub 2005 Jun 29.
PMID: 15996475 [PubMed - indexed for MEDLINE]
Related citations

894. Test-retest repeatability of self-reported environmental exposures in Parkinson's disease cases and healthy controls.
Gartner CE, Battistutta D, Dunne MP, Silburn PA, Mellick GD.
PMID: 15994111 [PubMed - indexed for MEDLINE]
Related citations

895. Behavioral differences in a rotenone-induced hemiparkinsonian rat model developed following intranigral or median forebrain bundle infusion.
Sindhu KM, Saravanan KS, Mohanakumar KP.
Brain Res. 2005 Jul 27;1051(1-2):25-34.
PMID: 15992782 [PubMed - indexed for MEDLINE]
Related citations

896. The emerging utility of animal models of chronic neurodegenerative diseases.
Kahle PJ, Haass C.
897. Dieldrin induces ubiquitin-proteasome dysfunction in alpha-synuclein overexpressing dopaminergic neuronal cells and enhances susceptibility to apoptotic cell death.

898. Investigating the receptor-independent neuroprotective mechanisms of nicotine in mitochondria.

899. Wild-type alpha-synuclein interacts with pro-apoptotic proteins PKCdelta and BAD to protect dopaminergic neuronal cells against MPP+-induced apoptotic cell death.

900. Microglial activation induced by neurodegeneration: a proteomic analysis.

Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants: implications for arsenic metabolism and the age-at-onset of Alzheimer's and Parkinson's diseases.

Schmuck EM, Board PG, Whitbread AK, Tetlow N, Cavanaugh JA, Blackburn AC, Masoumi A.

Forcing nonamyloidogenic beta-synuclein to fibrillate.

Yamin G, Munishkina LA, Karymov MA, Lyubchenko YL, Uversky VN, Fink AL.

The role of phospholipid methylation in 1-methyl-4-phenyl-pyridinium ion (MPP+)-induced neurotoxicity in PC12 cells.

Lee ES, Chen H, Charlton CG, Soliman KF.

Superoxide dismutase/catalase mimetics are neuroprotective against selective
paraquat-mediated dopaminergic neuron
death in the substantial nigra: implications
for Parkinson disease.
Peng J, Stevenson FF, Doctrow SR,
Andersen JK.
J Biol Chem. 2005 Aug
PMID: 15946937 [PubMed - indexed for
MEDLINE] Free Article
Related citations

905. BimEL up-regulation potentiates AIF
translocation and cell death in response to
MPTP.
Liou AK, Zhou Z, Pei W, Lim TM, Yin
XM, Chen J.
2005 Jun 7.
PMID: 15941767 [PubMed - indexed for
MEDLINE] Free Article
Related citations

906. Potential occupational risks for
neurodegenerative diseases.
Park RM, Schulte PA, Bowman JD,
Walker JT, Bondy SC, Yost MG,
Touchstone JA, Dosemeci M.
PMID: 15940722 [PubMed - indexed for
MEDLINE]
Related citations

907. Acute intranigral infusion of rotenone in
rats causes progressive biochemical
lesions in the striatum similar to
Parkinson's disease.
Saravanan KS, Sindhu KM,
Mohanakumar KP.
PMID: 15936733 [PubMed - indexed for
MEDLINE]
Related citations

908. Mitochondrial membrane depolarization
and the selective death of dopaminergic
neurons by rotenone: protective effect of coenzyme Q10.
Moon Y, Lee KH, Park JH, Geum D, Kim K.
PMID: 15934940 [PubMed - indexed for MEDLINE]

Related citations

909. Dopaminergic neurotoxicity by 6-OHDA and MPP+: differential requirement for neuronal cyclooxygenase activity.
Carrasco E, Casper D, Werner P.
PMID: 15931668 [PubMed - indexed for MEDLINE]

Related citations

910. Activation of mitochondrial ATP-sensitive potassium channels improves rotenone-related motor and neurochemical alterations in rats.
PMID: 15927086 [PubMed - indexed for MEDLINE]

Related citations

911. Increased sensitivity of striatal dopamine release to H2O2 upon chronic rotenone treatment.
Milusheva E, Baranyi M, Kittel A, Sperlágh B, Vizi ES.
PMID: 15925285 [PubMed - indexed for MEDLINE]

Related citations

912. Rotenone induces aggregation of gamma-tubulin protein and subsequent disorganization of the centrosome:
relevance to formation of inclusion bodies and neurodegeneration.
Diaz-Corrales FJ, Asanuma M, Miyazaki I, Miyoshi K, Ogawa N.
PMID: 15893636 [PubMed - indexed for MEDLINE]
Related citations

913. Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue.
PMID: 15890457 [PubMed - indexed for MEDLINE]
Related citations

914. Energy status, ubiquitin proteasomal function, and oxidative stress during chronic and acute complex I inhibition with rotenone in mesencephalic cultures.
Zeevalk GD, Bernard LP.
PMID: 15890011 [PubMed - indexed for MEDLINE]
Related citations

915. The role of microglia in paraquat-induced dopaminergic neurotoxicity.
Wu XF, Block ML, Zhang W, Qin L, Wilson B, Zhang WQ, Veronesi B, Hong JS.
PMID: 15890010 [PubMed - indexed for MEDLINE]
Related citations

916. Toxicity of redox cycling pesticides in primary mesencephalic cultures.
Bonneh-Barkay D, Langston WJ, Di Monte DA.
PMID: 15890009 [PubMed - indexed for MEDLINE]
Related citations

917. The effect of endogenous dopamine in rotenone-induced toxicity in PC12 cells.
Dukes AA, Korwek KM, Hastings TG.
PMID: 15890007 [PubMed - indexed for MEDLINE]
Related citations

918. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection.
Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O.
Related citations

919. Increased myocardial N-myristoyltransferase activity in rotenone model of Parkinsonism.
Pasha MK, Sharma RK, Rajput AH.
PMID: 15870904 [PubMed - indexed for MEDLINE]
Related citations

920. Role of oxidative stress in paraquat-induced dopaminergic cell degeneration.
McCormack AL, Atienza JG, Johnston LC, Andersen JK, Vu S, Di Monte DA.
PMID: 15857406 [PubMed - indexed for
921. **Sleep disturbances in the rotenone animal model of Parkinson disease.**
García-García F, Ponce S, Brown R, Cussen V, Krueger JM.
Brain Res. 2005 May 3;1042(2):160-8.
PMID: 15854587 [PubMed - indexed for MEDLINE]

922. **MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration.**

923. **Parkinson's disease risk factors: genetic, environmental, or both?**
Allam MF, Del Castillo AS, Navajas RF.
PMID: 15829184 [PubMed - indexed for MEDLINE]

924. **Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat + maneb-induced Parkinson disease phenotype.**
Thiruchelvam M, Prokopenko O, Cory-Slechta DA, Buckley B, Mirochnitchenko O.
Richfield, Eric K [removed].
PMID: 15824117 [PubMed - indexed for MEDLINE]
925. Systematic administration of iptakalim, an ATP-sensitive potassium channel opener, prevents rotenone-induced motor and neurochemical alterations in rats.

926. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures.

Testa CM, Sherer TB, Greenamyre JT.

927. Consumption of milk and calcium in midlife and the future risk of Parkinson disease.

Park M, Ross GW, Petrovitch H, White LR, Masaki KH, Nelson JS, Tanner CM, Curb JD, Blanchette PL, Abbott RD.

928. Developmental pesticide exposures and the Parkinson's disease phenotype.

Cory-Slechta DA, Thiruchelvam M, Richfield EK, Barlow BK, Brooks AI.

Related citations

929. Parkinson's disease among Inuit in Greenland: organochlorines as risk factors.
Koldkjaer OG, Wermuth L, Bjerregaard P.
PMID: 15736686 [PubMed-indexed for MEDLINE]

Related citations

930. Possible involvement of Ca2+ signaling in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells.
Wang XJ, Xu JX.
PMID: 15698934 [PubMed-indexed for MEDLINE]

Related citations

931. Neuroprotective effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline on cultured rat mesencephalic neurons in the presence or absence of various neurotoxins.
Brain Res. 2005 Feb 8;1033(2):143-50.
PMID: 15694918 [PubMed-indexed for MEDLINE]

Related citations

932. Cytochrome c release from rat brain mitochondria is proportional to the mitochondrial functional deficit: implications for apoptosis and neurodegenerative disease.
Clayton R, Clark JB, Sharpe M.
PMID: 15686486 [PubMed-indexed for MEDLINE]

Related citations
933. **Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity.**
Wang XJ, Xu JX.
PMID: 15681030 [PubMed - indexed for MEDLINE]
Related citations

934. **Parkinson disease studies yield insights.**
Friedrich MJ.
PMID: 15671413 [PubMed - indexed for MEDLINE]
Related citations

935. **Compensatory caspase activation in MPP+-induced cell death in dopaminergic neurons.**
Chee JL, Guan XL, Lee JY, Dong B, Leong SM, Ong EH, Liou AK, Lim TM.
PMID: 15666094 [PubMed - indexed for MEDLINE]
Related citations

936. **Pathological proteins in Parkinson's disease: focus on the proteasome.**
Snyder H, Wolozin B.
PMID: 15655264 [PubMed - indexed for MEDLINE]
Related citations

937. **MPP+: mechanism for its toxicity in cerebellar granule cells.**
González-Polo RA, Soler G, Fuentes JM.
PMID: 15655251 [PubMed - indexed for MEDLINE]
Related citations
938. RA410/Sly1 suppresses MPP+ and 6-hydroxydopamine-induced cell death in SH-SY5Y cells.
Bando Y, Katayama T, Taniguchi M, Ishibashi T, Matsuo N, Ogawa S, Tohyama M.
PMID: 15649705 [PubMed-indexed for MEDLINE]
Related citations

939. Pesticides and risk of Parkinson disease: a population-based case-control study.
PMID: 15642854 [PubMed-indexed for MEDLINE]
Related citations

940. Effect of sesamin in Acanthopanax senticosus HARMS on behavioral dysfunction in rotenone-induced parkinsonian rats.
Related citations

941. Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease.
Andrews ZB, Horvath B, Barnstable CJ, Elsworth J, Yang L, Beal MF, Roth RH, Matthews RT, Horvath TL.
Related citations
Related citations

Alam M, Schmidt WJ.
Physiol Behav. 2004 Dec 15;83(3):395-400.
PMID: 15581661 [PubMed - indexed for MEDLINE]
Related citations

944. Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster.
Coulom H, Birman S.
Related citations

945. Pramipexole protects against apoptotic cell death by non-dopaminergic mechanisms.
Gu M, Iravani MM, Cooper JM, King D, Jenner P, Schapira AH.
PMID: 15569251 [PubMed - indexed for MEDLINE]
Related citations
946. **Toxicity of dipyridyl compounds and related compounds.**
Li S, Crooks PA, Wei X, de Leon J.
PMID: 15560568 [PubMed - indexed for MEDLINE]
Related citations

Laske C, Wormstall H, Einsiedler K, Buchkremer G.
PMID: 15551110 [PubMed - indexed for MEDLINE]
Related citations

948. **TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells.**
Bollimuntha S, Singh BB, Shavali S, Sharma SK, Ebadi M.
Related citations

949. **Environmental factors and Parkinson's disease: a case-control study in the Tuscany region of Italy.**
PMID: 15542008 [PubMed - indexed for MEDLINE]
950. **The neuromelanin of human substantia nigra: physiological and pathogenic aspects.**

PMID: 15541018 [PubMed-indexed for MEDLINE]

951. **Rotenone, deguelin, their metabolites, and the rat model of Parkinson's disease.**

PMID: 15540952 [PubMed-indexed for MEDLINE]

952. **Pesticides and organic agriculture.**

DiMatteo K.

953. **Rotenone potentiates dopamine neuron loss in animals exposed to lipopolysaccharide prenatally.**

Ling Z, Chang QA, Tong CW, Leurgans SE, Lipton JW, Carvey PM.

PMID: 15530876 [PubMed-indexed for MEDLINE]

954. **Modulation of antioxidant defense**
systems by the environmental pesticide maneb in dopaminergic cells.
Barlow BK, Lee DW, Cory-Slechta DA, Opanashuk LA.
PMID: 15527874 [PubMed - indexed for MEDLINE]
Related citations

955. Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10.
McCarthy S, Somayajulu M, Sikorska M, Borowy-Borowski H, Pandey S.
PMID: 15519605 [PubMed - indexed for MEDLINE]
Related citations

956. Comparative analysis of passive dosimetry and biomonitoring for assessing chlorpyrifos exposure in pesticide workers.
Geer LA, Cardello N, Dellarco MJ, Leighton TJ, Zendzian RP, Roberts JD, Buckley TJ.
Related citations

957. A fetal risk factor for Parkinson's disease.
Barlow BK, Richfield EK, Cory-Slechta DA, Thiruchelvam M.
PMID: 15509894 [PubMed - indexed for MEDLINE]
Related citations

958. Involvement of dopamine D(2)/D(3) receptors and BDNF in the neuroprotective effects of S32504 and pramipexole against 1-methyl-4-
phenylpyridinium in terminally differentiated SH-SY5Y cells.
Presgraves SP, Borwege S, Millan MJ, Joyce JN.
PMID: 15473989 [PubMed - indexed for MEDLINE]
Related citations

959. Distinct mechanisms of neurodegeneration induced by chronic complex I inhibition in dopaminergic and non-dopaminergic cells.
Kweon GR, Marks JD, Krencik R, Leung EH, Schumacker PT, Hyland K, Kang UJ.
Related citations

960. Cigarette smoking and Parkinson's disease: a case-control study in a population characterized by a high prevalence of pesticide exposure.
Galanaud JP, Elbaz A, Clavel J, Vidal JS, Corrèze JR, Alpérovitch A, Tzourio C.
PMID: 15468111 [PubMed - indexed for MEDLINE]
Related citations

961. Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease.
Bretauud S, Lee S, Guo S.
PMID: 15451049 [PubMed - indexed for MEDLINE]
Related citations

962. The cytotoxic activity of lactoperoxidase: enhancement and inhibition by neuroactive compounds.

Related citations

963. **Variable effects of chronic subcutaneous administration of rotenone on striatal histology.**

Related citations

964. **The effect of macromolecular crowding on protein aggregation and amyloid fibril formation.**
Munishkina LA, Cooper EM, Uversky VN, Fink AL.

Related citations

965. **Dopaminergic neurotoxicity of homocysteine and its derivatives in primary mesencephalic cultures.**
Heider I, Lehmensiek V, Lenk T, Müller T, Storch A.

Related citations

966. **Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson's disease and Lewy body pathology.**
Conn KJ, Gao W, McKee A, Lan MS,
Ullman MD, Eisenhauer PB, Fine RE, Wells JM.
PMID: 15353226 [PubMed - indexed for MEDLINE]
Related citations

967. Activation of NF-kappaB is involved in 6-hydroxydopamine-but not MPP+-induced dopaminergic neuronal cell death: its potential role as a survival determinant.
Park SH, Choi WS, Yoon SY, Ahn YS, Oh YJ.
PMID: 15336524 [PubMed - indexed for MEDLINE]
Related citations

968. Paraoxonase 1 (PON1) gene polymorphisms and Parkinson's disease in a Finnish population.
Clarimon J, Eerola J, Hellström O, Tienari PJ, Singleton A.
PMID: 15331145 [PubMed - indexed for MEDLINE]
Related citations

969. Alpha and beta estradiol protect neuronal but not native PC12 cells from paraquat-induced oxidative stress.
PMID: 15325966 [PubMed - indexed for MEDLINE]
Related citations

970. Rotenone induces apoptosis via activation of bad in human dopaminergic SH-SY5Y cells.
Watabe M, Nakaki T.

Related citations

971. Epidemiology of multiple system atrophy: a prevalence and pilot risk factor study in Aquitaine, France.
Chrysostome V, Tison F, Yekhlef F, Sourgen C, Baldi I, Dartigues JF.
PMID: 15272223 [PubMed - indexed for MEDLINE]
Related citations

972. L-DOPA reverses the hypokinetic behaviour and rigidity in rotenone-treated rats.
Alam M, Schmidt WJ.
PMID: 15265640 [PubMed - indexed for MEDLINE]
Related citations

973. Effects of iptakalim on rotenone-induced cytotoxicity and dopamine release from PC12 cells.
PMID: 15265589 [PubMed - indexed for MEDLINE]
Related citations

974. Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration.
Uversky VN.
PMID: 15258850 [PubMed - indexed for
975. **Clinical characteristics of Parkinson's disease among Inuit in Greenland and inhabitants of the Faroe Islands and Als (Denmark).**
Wermuth L, Bünger N, von Weitzel-Mudersback P, Pakkenberg H, Jeune B.
PMID: 15254942 [PubMed - indexed for MEDLINE]

976. **Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity.**
PMID: 15252205 [PubMed - indexed for MEDLINE] [Free PMC Article]

977. **G209A mutant alpha synuclein expression specifically enhances dopamine induced oxidative damage.**
Orth M, Tabrizi SJ, Tomlinson C, Messmer K, Korlipara LV, Schapira AH, Cooper JM.
PMID: 15234109 [PubMed - indexed for MEDLINE]

978. **[Study on the risk factors and its interaction on Parkinson disease].**
Tan XH, Wang SM, Xue NQ, Teng WT, Feng YQ.
PMID: 15231138 [PubMed - indexed for MEDLINE]
Related citations

979. Inhibitory effects of 1-methyl-4-phenylpyridinium on glutamate uptake into cultured C6 glioma cells.
Related citations

980. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis.
Related citations

981. Association of pesticide exposure with neurologic dysfunction and disease.
Related citations

982. Protection against MPP+ neurotoxicity in cerebellar granule cells by antioxidants.
González-Polo RA, Soler G, Rodríguezmartín A, Morán JM, Fuentes JM.
PMID: 15193280 [PubMed - indexed for MEDLINE]
Related citations
983. **A non-peptidyl neurotrophic small molecule for midbrain dopaminergic neurons.**
Lin LF, Rubin LL, Xu M.
PMID: 15189341 [PubMed - indexed for MEDLINE]

984. **The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization.**

985. **Occupational and environmental risk factors for Parkinson's disease.**
Lai BC, Marion SA, Teschke K, Tsui JK.
PMID: 15177059 [PubMed - indexed for MEDLINE]

986. **Further evidence that interactions between CYP2D6 and pesticide exposure increase risk for Parkinson's disease.**
Deng Y, Newman B, Dunne MP, Silburn PA, Mellick GD.
PMID: 15174030 [PubMed - indexed for MEDLINE]

987. **Paraquat-induced apoptotic cell death in cerebellar granule cells.**

Related citations

Related citations

Related citations

Related citations

991. Neuroprotective effect of fraxetin and myricetin against rotenone-induced apoptosis in neuroblastoma cells. Molina-Jiménez MF, Sánchez-Reus MI,
Andres D, Cascales M, Benedi J.
PMID: 15120578 [PubMed - indexed for MEDLINE]
Related citations

992. Acute exposure to organochlorine pesticides does not affect striatal dopamine in mice.
Thiffault C, Langston WJ, Di Monte DA.
PMID: 15111243 [PubMed]
Related citations

993. Brain inflammation enhances 1-methyl-4-phenylpyridinium-evoked neurotoxicity in rats.
Goralski KB, Renton KW.
PMID: 15094308 [PubMed - indexed for MEDLINE]
Related citations

994. Alpha-synuclein: normal function and role in neurodegenerative diseases.
Norris EH, Giasson BI, Lee VM.
PMID: 15094295 [PubMed - indexed for MEDLINE]
Related citations

Storch A, Hwang YI, Gearhart DA, Beach JW, Neafsey EJ, Collins MA, Schwarz J.
PMID: 15086525 [PubMed - indexed for MEDLINE]
Related citations
996. The neurobehavioral changes induced by bilateral rotenone lesion in medial forebrain bundle of rats are reversed by L-DOPA.
 Alam M, Mayerhofer A, Schmidt WJ.
 PMID: 15084427 [PubMed - indexed for MEDLINE]
 Related citations

997. Oxidative stress and microglial activation in substantia nigra following striatal MPP+.
 Miwa H, Kubo T, Morita S, Nakanishi I, Kondo T.
 PMID: 15076730 [PubMed - indexed for MEDLINE]
 Related citations

998. Proteolytic activation of proapoptotic kinase PKCdelta is regulated by overexpression of Bcl-2: implications for oxidative stress and environmental factors in Parkinson's disease.
 Kanthasamy AG, Kitazawa M, Kaul S, Yang Y, Lahiri DK, Anantharam V, Kanthasamy A.
 PMID: 15033812 [PubMed - indexed for MEDLINE]
 Related citations

999. Suppression of caspase-3-dependent proteolytic activation of protein kinase C delta by small interfering RNA prevents MPP+-induced dopaminergic degeneration.
 Yang Y, Kaul S, Zhang D, Anantharam V, Kanthasamy AG.
Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain.

Inhibition of mixed lineage kinase 3 attenuates MPP+-induced neurotoxicity in SH-SY5Y cells.

Parkinson's disease, pesticides and individual vulnerability.

Use of a VA pharmacy database to screen for areas at high risk for disease: Parkinson's disease and exposure to pesticides.
PMID: 15018696 [PubMed - indexed for MEDLINE]
Related citations

Thiruchelvam MJ, Powers JM, Cory-Slechta DA, Richfield EK.
PMID: 15009131 [PubMed - indexed for MEDLINE]
Related citations

1005. CYP2D6 polymorphism, pesticide exposure, and Parkinson's disease.
PMID: 14991823 [PubMed - indexed for MEDLINE]
Related citations

1006. Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway.
Lee HJ, Khoshaghideh F, Patel S, Lee SJ.
Related citations

1007. Rotenone-induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells.
Epub 2004 Feb 19.
1008. **[Caffeic acid (CA) protects cerebellar granule neurons (CGNs) from apoptosis induced by neurotoxin 1-methyl-4-phenylpyridinium (MPP+)].**
Tian XF, Pu XP.
PMID: 14970883 [PubMed - indexed for MEDLINE] [Free Article]

1009. **Effect of melatonin on temporal changes of reactive oxygen species and glutathione after MPP(+) treatment in human astrocytoma U373MG cells.**
Chuang JI, Chen TH.
PMID: 14962063 [PubMed - indexed for MEDLINE]

1010. **Rotenone induces non-specific central nervous system and systemic toxicity.**
Lapointe N, St-Hilaire M, Martinoli MG, Blanchet J, Gould P, Rouillard C, Cicchetti F.
PMID: 14766796 [PubMed - indexed for MEDLINE] [Free Article]

1011. **1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthase-derived superoxide.**
Shang T, Kotamraju S, Kalivendi SV, Hillard CJ, Kalyanaraman B.
1012. Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function, neurite outgrowth, and 1-methyl-4-phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-XL.
Shim JW, Koh HC, Chang MY, Roh E, Choi CY, Oh YJ, Son H, Lee YS, Studer L, Lee SH.
Related citations

1013. Alpha-synuclein up-regulation and aggregation during MPP+-induced apoptosis in neuroblastoma cells: intermediacy of transferrin receptor iron and hydrogen peroxide.
Kalivendi SV, Cunningham S, Kotamraju S, Joseph J, Hillard CJ, Kalyanaraman B.
Related citations

1014. Andrographolide reduces inflammation-mediated dopaminergic neurodegeneration in mesencephalic neuron-glia cultures by inhibiting microglial activation.
Related citations
1015. Paraquat and iron exposure as possible synergistic environmental risk factors in Parkinson's disease.
 Andersen JK.
 Review. No abstract available.
 PMID: 14715449 [PubMed - indexed for MEDLINE]
 Related citations

1016. Multiple risk factors for Parkinson's disease.
 Gorell JM, Peterson EL, Rybicki BA, Johnson CC.
 PMID: 14706220 [PubMed - indexed for MEDLINE]
 Related citations

1017. alpha-Synuclein selectively increases manganese-induced viability loss in SK-N-MC neuroblastoma cells expressing the human dopamine transporter.
 Pifl C, Khorchide M, Kattinger A, Reither H, Hardy J, Hornykiewicz O.
 PMID: 14698476 [PubMed - indexed for MEDLINE]
 Related citations

1018. Melatonin protects against oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the mouse nigrostriatum.
 Thomas B, Mohanakumar KP.
 PMID: 14675127 [PubMed - indexed for MEDLINE]
 Related citations

Related citations

1020. Dopamine is involved in selectivity of dopaminergic neuronal death by rotenone.
PMID: 14663204 [PubMed - indexed for MEDLINE]

Related citations

1021. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats.
Maharaj DS, Saravanan KS, Maharaj H, Mohanakumar KP, Daya S.
PMID: 14643753 [PubMed - indexed for MEDLINE]

Related citations

1022. Mechanism of toxicity in rotenone models of Parkinson's disease.
Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT.
J Neurosci. 2003 Nov 26;23(34):10756-64.
PMID: 14645467 [PubMed - indexed for MEDLINE]
1023. Neuroprotective effects of the novel D3/D2 receptor agonist and antiparkinson agent, S32504, in vitro against 1-methyl-4-phenylpyridinium (MPP+) and in vivo against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a comparison to ropinirole.
Joyce JN, Presgraves S, Renish L, Borwege S, Osredkar T, Hagner D, Replogle M, PazSoldan M, Millan MJ.
PMID: 14637109 [PubMed - indexed for MEDLINE]
Related citations

1024. The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons.
Ahmadi FA, Linseman DA, Grammatopoulos TN, Jones SM, Bouchard RJ, Freed CR, Heidenreich KA, Zawada WM.
PMID: 14622122 [PubMed - indexed for MEDLINE]
Related citations

1025. An inhibitor of mitochondrial complex I, rotenone, inactivates proteasome by oxidative modification and induces aggregation of oxidized proteins in SH-SY5Y cells.
PMID: 14598303 [PubMed - indexed for MEDLINE]
Related citations

1026. PDNF, a human parasite-derived mimic
of neurotrophic factors, prevents caspase activation, free radical formation, and death of dopaminergic cells exposed to the Parkinsonism-inducing neurotoxin MPP+.
Chuenkova MV, Pereira MA.
PMID: 14597229 [PubMed - indexed for MEDLINE]
Related citations

1027. Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics.
Zecca L, Zucca FA, Wilms H, Sulzer D.
PMID: 14585596 [PubMed - indexed for MEDLINE]
Related citations

1028. Environmental, life-style, and physical precursors of clinical Parkinson's disease: recent findings from the Honolulu-Asia Aging Study.
Abbott RD, Ross GW, White LR, Sanderson WT, Burchfiel CM, Kashon M, Sharp DS, Masaki KH, Curb JD, Petrovitch H.
PMID: 14579122 [PubMed - indexed for MEDLINE]
Related citations

Tada-Oikawa S, Hiraku Y, Kawanishi M, Kawanishi S.
PMID: 14561532 [PubMed - indexed for MEDLINE]
Related citations

Related citations

Related citations

Related citations

Related citations

1034. The mitochondrial complex I inhibitor
Annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism.
PMID: 14521988 [PubMed - indexed for MEDLINE]
Related citations

1035. Minocycline enhances MPTP toxicity to dopaminergic neurons.
PMID: 14515357 [PubMed - indexed for MEDLINE]
Related citations

1036. Rotenone increases glutamate-induced dopamine release but does not affect hydroxyl-free radical formation in rat striatum.
Leng A, Feldon J, Ferger B.
PMID: 14515342 [PubMed - indexed for MEDLINE]
Related citations

1037. Targeted expression of BCL-2 attenuates MPP+ but not 6-OHDA induced cell death in dopaminergic neurons.
O'Malley KL, Liu J, Lotharius J, Holtz W.
PMID: 13678665 [PubMed - indexed for MEDLINE]
Related citations

1038. Differential regulation of JNK in
caspase-3-mediated apoptosis of MPP(+)–treated primary cortical neurons.
Sun DS, Chang HH.
PMID: 12972283 [PubMed - indexed for MEDLINE]

Related citations

1039. Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress.
Wersinger C, Prou D, Vernier P, Sidhu A.
Related citations

1040. Lifestyle-related risk factors for Parkinson's disease: a population-based study.
PMID: 12956856 [PubMed - indexed for MEDLINE]
Related citations

Uversky VN.
PMID: 12956606 [PubMed - indexed for MEDLINE]
Related citations
 He Y, Imam SZ, Dong Z, Jankovic J, Ali SF, Appel SH, Le W.
 PMID: 12950443 [PubMed - indexed for MEDLINE]
 Related citations

 Fariello RG, Ito S, Gallorini M, Sulzer D.
 PMID: 12946053 [PubMed - indexed for MEDLINE]
 Related citations

 Hirsch EC, Höglinger G, Rousselet E, Breidert T, Parain K, Feger J, Ruberg M,
 Prigent A, Cohen-Salmon C, Launay JM.
 PMID: 12946051 [PubMed - indexed for MEDLINE]
 Related citations

1045. The environment and Parkinson's disease: is the nigrostriatal system preferentially targeted by neurotoxins?
 Di Monte DA.
 PMID: 12941575 [PubMed - indexed for MEDLINE]
 Related citations

1046. The rotenone model of Parkinson's
disease: genes, environment and mitochondria.
Greenamyre JT, Betarbet R, Sherer TB.
Parkinsonism Relat Disord. 2003 Aug;9 Suppl 2:S59-64. Review.
PMID: 12915069 [PubMed - indexed for MEDLINE]

Related citations
Gao HM, Liu B, Zhang W, Hong JS.
PMID: 12915048 [PubMed - indexed for MEDLINE]

Related citations
1048. Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype.
PMID: 12911755 [PubMed - indexed for MEDLINE]

Related citations
PMID: 12911637 [PubMed - indexed for MEDLINE]

Related citations
1050. Association between Parkinson's disease and exposure to pesticides in
southwestern France.

Related citations

1051. Paraquat leads to dopaminergic neural vulnerability in organotypic midbrain culture.

Related citations

1052. Circadian rhythms of oxidative phosphorylation: effects of rotenone and melatonin on isolated rat brain mitochondria.

Related citations

1053. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons.

Related citations

1054. Effect of fraxetin and myricetin on rotenone-induced cytotoxicity in SH-SY5Y cells: comparison with N-acetylcysteine.
Molina-Jimenez MF, Sanchez-Reus MI, Benedi J.
PMID: 12860476 [PubMed - indexed for MEDLINE]

Related citations

Goers J, Manning-Bog AB, McCormack AL, Millett IS, Doniach S, Di Monte DA, Uversky VN, Fink AL.
PMID: 12859192 [PubMed - indexed for MEDLINE]

1056. Molecular mechanisms of dopaminergic neurodegeneration: genetic and environmental basis.
Imam SZ.
PMID: 12853331 [PubMed - indexed for MEDLINE]

1057. Mitochondria as a target for neurotoxins and neuroprotective agents.
Bachurin SO, Shevtsova EP, Kireeva EG, Oxenkrug GF, Sablin SO.
PMID: 12853325 [PubMed - indexed for MEDLINE]

1058. The rotenone model of Parkinson's disease.
Perier C, Bové J, Vila M, Przedborski S.
1059. **Caspase-dependent and -independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment.**

Han BS, Hong HS, Choi WS, Markelonis GJ, Oh TH, Oh YJ.
PMID: 12832530 [PubMed-indexed for MEDLINE] [Free Article]

1060. **Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation.**

Liu B, Gao HM, Hong JS.
PMID: 12826478 [PubMed-indexed for MEDLINE] [Free PMC Article]

1061. **Models of Parkinson's disease.**

Orth M, Tabrizi SJ.
PMID: 12815651 [PubMed-indexed for MEDLINE]

1062. **Alpha-synuclein protects naive but not dbcAMP-treated dopaminergic cell types from 1-methyl-4-phenylpyridinium toxicity.**

Jensen PJ, Alter BJ, O'Malley KL.
PMID: 12807439 [PubMed-indexed for MEDLINE]

1063. **Pesticides and Parkinson's disease.**

Related citations

1064. **Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats.**

Related citations

1065. **Ca2+-induced oxidative stress in brain mitochondria treated with the respiratory chain inhibitor rotenone.**

Related citations

1066. **Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson's disease.**

Related citations

1067. **[Parkinson's disease risk factors].**
1068. **Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration.**
Manning-Bog AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA.
Related citations

1069. **Increased synaptosomal dopamine content and brain concentration of paraquat produced by selective dithiocarbamates.**
Barlow BK, Thiruchelvam MJ, Bennice L, Cory-Slechta DA, Ballatori N, Richfield EK.
Related citations

1070. **Dependence on electron transport chain function and intracellular signaling of genomic responses in SH-SY5Y cells to the mitochondrial neurotoxin MPP(+).**
Brill LB 2nd, Bennett JP Jr.
Related citations

1071. **Update on Parkinson disease.**
Siderowf A, Stern M.
Related citations

1072. **[Genetics and environmental factors of**
Parkinson disease.
Broussolle E, Thobois S.
PMID: 12690660 [PubMed - indexed for MEDLINE]
Related citations

1073. [Genetic and environmental factors of Parkinson's disease]
Broussolle E, Thobois S.
PMID: 12690311 [PubMed - as supplied by publisher]
Related citations

1074. Selective microglial activation in the rat rotenone model of Parkinson's disease.
Sherer TB, Betarbet R, Kim JH, Greenamyre JT.
PMID: 12686372 [PubMed - indexed for MEDLINE]
Related citations

1075. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation.
Related citations

1076. Transient and reversible parkinsonism after acute organophosphate poisoning.
Arima H, Sobue K, So M, Morishima T, Ando H, Katsuya H.
Tetrahydrobiopterin precursor sepiapterin provides protection against neurotoxicity of 1-methyl-4-phenylpyridinium in nigral slice cultures.

Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration.

Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson's disease by blocking microglial activation.

Non-steroidal anti-inflammatory drug sodium salicylate, but not diclofenac or celecoxib, protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats.
Sairam K, Saravanan KS, Banerjee R, Mohanakumar KP.
PMID: 12618347 [PubMed - indexed for MEDLINE]
Related citations

1081. **Neurodegenerative diseases and exposure to pesticides in the elderly.**
Baldi I, Lebaillly P, Mohammed-Brahim B, Letenneur L, Dartigues JF, Brochard P.
Related citations

1082. **Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease.**
Gao HM, Hong JS, Zhang W, Liu B.
Related citations

1083. **Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons.**
Holtz WA, O'Malley KL.
Related citations

1084. **The role of glycolysis and gluconeogenesis in the cytoprotection of neuroblastoma cells against 1-methyl 4-phenylpyridinium ion toxicity.**
Mazzio E, Soliman KF.
1085. Regulation of alpha-synuclein by bFGF in cultured ventral midbrain dopaminergic neurons.
Rideout HJ, Dietrich P, Savalle M, Dauer WT, Stefanis L.
PMID: 12562524 [PubMed-indexed for MEDLINE]

1086. Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction.
Zhang J, Fitsanakis VA, Gu G, Jing D, Ao M, Amarnath V, Montine TJ.
PMID: 12558996 [PubMed-indexed for MEDLINE]

1087. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats.
PMID: 12558969 [PubMed-indexed for MEDLINE]

1089. **S18Y polymorphism in the UCH-L1 gene and Parkinson's disease: evidence for an age-dependent relationship.**
PMID: 12539205 [PubMed - indexed for MEDLINE]

1090. **Subtoxic concentration of manganese synergistically potentiates 1-methyl-4-phenylpyridinium-induced neurotoxicity in PC12 cells.**
Wang RG, Zhu XZ.
PMID: 12535785 [PubMed - indexed for MEDLINE]

1091. **An inflammatory review of Parkinson's disease.**
Orr CF, Rowe DB, Halliday GM.
PMID: 12531233 [PubMed - indexed for MEDLINE]

1092. **Pyruvic acid cytoprotection against 1-methyl-4-phenylpyridinium, 6-hydroxydopamine and hydrogen peroxide toxicities in vitro.**
Mazzio E, Soliman KF.
PMID: 12527392 [PubMed - indexed for MEDLINE]
1093. 1-Methyl-4-phenylpyridinium (MPP+) induced apoptosis and mitochondrial oxidant generation: role of transferrin receptor-dependent iron and hydrogen peroxide.
Kalivendi SV, Kotamraju S, Cunningham S, Shang T, Hillard CJ, Kalyanaraman B.
Biochem J. 2003 Apr 1;371(Pt 1):151-64.
Related citations

1094. 1-methyl-4-phenylpyridinium (MPP+) decreases mitochondrial oxidation-reduction (REDOX) activity and membrane potential (Deltapsi(m)) in rat striatum.
Nakai M, Mori A, Watanabe A, Mitsumoto Y.
PMID: 12504872 [PubMed - indexed for MEDLINE]
Related citations

1095. Mitochondrial complex inhibitors preferentially damage substantia nigra dopamine neurons in rat brain slices.
Bywood PT, Johnson SM.
PMID: 12504867 [PubMed - indexed for MEDLINE]
Related citations

1096. Neurotrophic and neuroprotective effects of tripchlorolide, an extract of Chinese herb Tripterygium wilfordii Hook F, on dopaminergic neurons.
Li FQ, Cheng XX, Liang XB, Wang XH, Xue B, He QH, Wang XM, Han JS.
PMID: 12504865 [PubMed - indexed for MEDLINE]
Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation.
Sherer TB, Kim JH, Betarbet R, Greenamyre JT.
PMID: 12504863 [PubMed - indexed for MEDLINE]

Rotenone neurotoxicity: a new window on environmental causes of Parkinson's disease and related brain amyloidoses.
Trojanowski JQ.
PMID: 12504862 [PubMed - indexed for MEDLINE]

Effects of green tea polyphenols on dopamine uptake and on MPP+-induced dopamine neuron injury.
Pan T, Fei J, Zhou X, Jankovic J, Le W.
PMID: 12495785 [PubMed - indexed for MEDLINE]

Catalysis of catechol oxidation by metal-dithiocarbamate complexes in pesticides.
Fitsanakis VA, Amarnath V, Moore JT, Montine KS, Zhang J, Montine TJ.
PMID: 12488139 [PubMed - indexed for MEDLINE]

Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease.

Related citations

1102. Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals.
PMID: 12485407 [PubMed - indexed for MEDLINE]

Related citations

1103. In vivo evaluation of [11C]-3-[2-((3-methoxyphenylamino)carbonyl)ethenyl]-4,6-dichloroindole-2-carboxylic acid ([11C]3MPICA) as a PET radiotracer for the glycine site of the NMDA ion channel.
PMID: 12453587 [PubMed - indexed for MEDLINE]

Related citations

1104. Tubuloside B from Cistanche salsa rescues the PC12 neuronal cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis and oxidative stress.
PMID: 12451484 [PubMed - indexed for MEDLINE]

Related citations

1106. **Plantation work and risk of Parkinson disease in a population-based longitudinal study.**

Petrovitch H, Ross GW, Abbott RD, Sanderson WT, Sharp DS, Tanner CM, Masaki KH, Blanchette PL, Popper JS, Foley D, Launer L, White LR.

PMID: 12433267 [PubMed - indexed for MEDLINE]

1107. **Developmental exposure to the pesticides paraquat and maneb and the Parkinson's disease phenotype.**

Thiruchelvam M, Richfield EK, Goodman BM, Baggs RB, Cory-Slechta DA.

PMID: 12428734 [PubMed - indexed for MEDLINE]

1108. **Conformational behavior of human alpha-synuclein is modulated by familial Parkinson's disease point mutations A30P and A53T.**

Li J, Uversky VN, Fink AL.

PMID: 12428728 [PubMed - indexed for MEDLINE]

1109. **Selective effects of insecticides on nigrostriatal dopaminergic nerve pathways.**

Bloomquist JR, Barlow RL, Gillette JS, Li W, Kirby ML.

Neurotoxicology. 2002 Oct;23(4-5):537-
44. PMID: 12428726 [PubMed - indexed for MEDLINE]
Related citations

1110. **Synergistic effects of pesticides and metals on the fibrillation of alpha-synuclein: implications for Parkinson's disease.**
Uversky VN, Li J, Bower K, Fink AL.
PMID: 12428725 [PubMed - indexed for MEDLINE]
Related citations

1111. **Environmental factors in Parkinson's disease.**
Di Monte DA, Lavasani M, Manning-Bog AB.
PMID: 12428721 [PubMed - indexed for MEDLINE]
Related citations

1112. **Identification of brain proteins that interact with 2-methylnorharman. An analog of the parkinsonian-inducing toxin, MPP+.**
Gearhart DA, Toole PF, Warren Beach J.
PMID: 12413654 [PubMed - indexed for MEDLINE]
Related citations

1113. **Overexpression of midbrain-specific transcription factor Nurr1 modifies susceptibility of mouse neural stem cells to neurotoxins.**
Lee MA, Lee HS, Lee HS, Cho KG, Jin BK, Sohn S, Lee YS, Ichinose H, Kim SU.
Neurosci Lett. 2002 Nov 15;333(1):74-
8. Possible involvement of both mitochondria- and endoplasmic reticulum-dependent caspase pathways in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells.
PMID: 12401552 [PubMed - indexed for MEDLINE]
Related citations

1114. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats.
PMID: 12385818 [PubMed - indexed for MEDLINE]
Related citations

1115. [Pesticide exposure and Parkinson's syndrome - the epidemiological and experimental evidence].
PMID: 12376887 [PubMed - indexed for MEDLINE]
Related citations

1116. Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP.
Methylpyridinium (MPP(+))- and nerve growth factor-induced changes in pro- and anti-apoptotic signaling pathways in SH-SY5Y neuroblastoma cells.
PMID: 12363409 [PubMed - indexed for MEDLINE]
Related citations

Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax.
Starkov AA, Polster BM, Fiskum G.
PMID: 12358746 [PubMed - indexed for MEDLINE]
Related citations

Pesticide-Parkinson link explored.
Bonetta L.
PMID: 12357226 [PubMed - indexed for MEDLINE]
Related citations

Pesticide exposure, host susceptibility factors and risk of Parkinson's disease: an introduction to a work in progress.
Greenlee AR, Burmester JK, Hiner BC.
PMID: 12239976 [PubMed - indexed for MEDLINE]
Related citations
1122. **Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells.**
Gélinas S, Martinoli MG.
PMID: 12237867 [PubMed-indexed for MEDLINE]
Related citations

1123. **Protective effect of verbascoside on 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells.**
Sheng GQ, Zhang JR, Pu XP, Ma J, Li CL.
PMID: 12231380 [PubMed-indexed for MEDLINE]
Related citations

1124. **Selective destruction of dopaminergic neurons by low concentrations of 6-OHDA and MPP+: protection by acetylsalicylic acid aspirin.**
Carrasco E, Werner P.
PMID: 12217628 [PubMed-indexed for MEDLINE]
Related citations

1125. **Further evidence for an association of the paraoxonase 1 (PON1) Met-54 allele with Parkinson's disease.**
Carmine A, Buervenich S, Sydow O, Anvret M, Olson L.
PMID: 12210872 [PubMed-indexed for MEDLINE]
Related citations

1126. **Activation of adenosine triphosphate-sensitive potassium channels confers protection against rotenone-induced cell death: therapeutic implications for**
Parkinson's disease.
Tai KK, Truong DD.
PMID: 12210849 [PubMed - indexed for MEDLINE]

Related citations

1127. NMDA sensitization and stimulation by peroxynitrite, nitric oxide, and organic solvents as the mechanism of chemical sensitivity in multiple chemical sensitivity.
Pall ML.

Related citations

1128. Dopamine efflux by MPTP and hydroxyl radical generation.
Obata T.
PMID: 12203043 [PubMed - indexed for MEDLINE]

Related citations

1129. MPTP: insights into parkinsonian neurodegeneration.
Speciale SG.
PMID: 12200192 [PubMed - indexed for MEDLINE]

Related citations

1130. Apoptotic molecules and MPTP-induced cell death.
Nicotra A, Parvez S.
PMID: 12200191 [PubMed - indexed for MEDLINE]
Related citations

1131. **Potential neurotoxic "agents provocateurs" in Parkinson's disease.**
Collins MA, Neafsey EJ.
PMID: 12200188 [PubMed - indexed for MEDLINE]

1132. **An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage.**

1133. **Expression of mutant alpha-synucleins enhances dopamine transporter-mediated MPP+ toxicity in vitro.**
Lehmensiek V, Tan EM, Schwarz J, Storch A.
PMID: 12151787 [PubMed - indexed for MEDLINE]

1134. **Modifying effects of dietary capsaicin and rotenone on 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis.**
Tanaka T, Kohno H, Sakata K, Yamada Y, Hirose Y, Sugie S, Mori H.

Related citations
1135. Environmental risk factors of young onset Parkinson's disease: a case-control study.
Tsai CH, Lo SK, See LC, Chen HZ, Chen RS, Weng YH, Chang FC, Lu CS.
PMID: 12140099 [PubMed - indexed for MEDLINE]
Related citations

1136. Estradiol protects dopaminergic neurons in a MPP+Parkinson's disease model.
Neuropharmacology. 2002 Jun;42(8):1056-64.
PMID: 12128007 [PubMed - indexed for MEDLINE]
Related citations

1137. Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat.
PMID: 12127150 [PubMed - indexed for MEDLINE]
Related citations

1138. Pergolide protects dopaminergic neurons in primary culture under stress conditions.
PMID: 12111455 [PubMed - indexed for
Differential regulation of glutamic acid decarboxylase mRNA and tyrosine hydroxylase mRNA expression in the aged manganese-treated rats.

PMID: 12106697 [PubMed - indexed for MEDLINE]

Age-environment and gene-environment interactions in the pathogenesis of Parkinson's disease.

Le Couteur DG, Muller M, Yang MC, Mellick GD, McLean AJ.

PMID: 12088093 [PubMed - indexed for MEDLINE]

Age-related alteration in hepatic disposition of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and pesticides.

Yang MC, McLean AJ, Le Couteur DG.

PMID: 12076315 [PubMed - indexed for MEDLINE]

Protection of dopaminergic neurons in primary culture by lisuride.

Coenzyme Q cytoprotective mechanisms for mitochondrial complex I cytopathies involves NAD(P)H: quinone oxidoreductase 1(NQO1).
Chan TS, Teng S, Wilson JX, Galati G, Khan S, O'Brien PJ.
PMID: 12069106 [PubMed - indexed for MEDLINE]

MPP+ increases alpha-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells.
Gómez-Santos C, Ferrer I, Reiriz J, Viñals F, Barrachina M, Ambrosio S.
PMID: 12062470 [PubMed - indexed for MEDLINE]

Environment, mitochondria, and Parkinson's disease.
Sherer TB, Betarbet R, Greenamyre JT.
Review.
PMID: 12061498 [PubMed - indexed for MEDLINE]

Role of hydroxyl radical formation in neurotoxicity as revealed by in vivo free radical trapping.
Obata T.
Review.
PMID: 12044541 [PubMed - indexed for MEDLINE]
1147. Effect of the catechol-O-methyltransferase inhibitor entacapone on the steady-state pharmacokinetics and pharmacodynamics of warfarin.
Dingemanse J, Meyerhoff C, Schadrack J.
Related citations

1148. Melatonin attenuates MPP+-induced neurodegeneration and glutathione impairment in the nigrostriatal dopaminergic pathway.
Chen ST, Chuang JI, Hong MH, Li EL.
PMID: 11982797 [PubMed - indexed for MEDLINE]
Related citations

1149. Human GDNF cDNA-engineered SH-SY5Y cells' neurotrophic and protective effect on primary dopaminergic neurons of rat.
Zhang W, Wang X, Yang Y.
PMID: 11930634 [PubMed - indexed for MEDLINE]
Related citations

1150. Elucidation of paraquat poisoning mechanism and development of the neuronal death model.
Fukushima T.
PMID: 11928321 [PubMed - indexed for MEDLINE]
Related citations

1151. Paraquat- and diquat-induced oxygen
radical generation and lipid peroxidation in rat brain microsomes.
Yumino K, Kawakami I, Tamura M, Hayashi T, Nakamura M.
PMID: 11926994 [PubMed indexed for MEDLINE] Free Article
Related citations

1152. Caspase inhibitors attenuate 1-methyl-4-phenylpyridinium toxicity in primary cultures of mesencephalic dopaminergic neurons.
PMID: 11923429 [PubMed indexed for MEDLINE] Free Article
Related citations

1153. Familial and environmental risk factors in Parkinson's disease: a case-control study in north-east Italy.
Zorzon M, Capus L, Pellegrino A, Cazzato G, Zivadinov R.
PMID: 11903115 [PubMed indexed for MEDLINE]
Related citations

1154. Evaluation of the protective effect of oestradiol against toxicity induced by 6-hydroxydopamine and 1-methyl-4-phenylpyridinium ion (Mpp+) towards dopaminergic mesencephalic neurones in primary culture.
Callier S, Le Saux M, Lhiaubet AM, Di Paolo T, Rostène W, Pelaprat D.
PMID: 11902121 [PubMed indexed for MEDLINE]
Related citations
Ikeda K, Kurokawa M, Aoyama S, Kuwana Y.
PMID: 11902116 [PubMed - indexed for MEDLINE]
Related citations

1156. Thioredoxin suppresses 1-methyl-4-phenylpyridinium-induced neurotoxicity in rat PC12 cells.
Bai J, Nakamura H, Hattori I, Tanito M, Yodoi J.
PMID: 11872262 [PubMed - indexed for MEDLINE]
Related citations

1157. Neurotoxicity of MPTP.
Fukuda T.
PMID: 11837540 [PubMed - indexed for MEDLINE]
Related citations

1158. Inhibition by R(+) or S(-) pramipexole of caspase activation and cell death induced by methylpyridinium ion or beta amyloid peptide in SH-SY5Y neuroblastoma.
PMID: 11835316 [PubMed - indexed for MEDLINE]
Related citations

1159. Selected presentations and general discussion: session IX summary and research needs.

Related citations

1160. **Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons.**

Related citations

1161. **Stimulation of non-alpha7 nicotinic receptors partially protects dopaminergic neurons from 1-methyl-4-phenylpyridinium-induced toxicity in culture.**

Related citations

1162. **Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease.**

Related citations

1163. **Tyrosine-hydroxylase immunoreactive cells in the rat striatum following treatment with MPP+.**
1164. Paraquat in developing countries.
PMID: 11783857 [PubMed-indexed for MEDLINE]
Related citations

PMID: 11781409 [PubMed-indexed for MEDLINE]
Related citations

1166. Optimism pervades Parkinson's conference.
Booker SM.
Related citations

1167. Dieldrin-induced oxidative stress and
neurochemical changes contribute to apoptotic cell death in dopaminergic cells.

Kitazawa M, Anantharam V, Kanthasamy AG.
PMID: 11728820 [PubMed - indexed for MEDLINE]

Related citations
1168. Substantia nigra neuromelanin: structure, synthesis, and molecular behaviour.
Zecca L, Tampellini D, Gerlach M, Riederer P, Fariello RG, Sulzer D.

Related citations
1169. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors.
Lee HJ, Shin SY, Choi C, Lee YH, Lee SJ.

Related citations
Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA.

Related citations
1171. Impairment of the neuronal dopamine
transporter activity in MPP(+) - treated rats was not prevented by treatments with nitric oxide synthase or poly(ADP-ribose) polymerase inhibitors.
Barc S, Page G, Barrier L, Piriou A, Fauconneau B.
PMID: 11698152 [PubMed - indexed for MEDLINE]
Related citations

1172. Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium.
King TD, Bijur GN, Jope RS.
PMID: 11689167 [PubMed - indexed for MEDLINE]
Related citations

1173. Warfarin and ropinirole interaction.
Bair JD, Oppelt TF.
PMID: 11675845 [PubMed - indexed for MEDLINE]
Related citations

1174. Nicotine administration reduces striatal MPP+ levels in mice.
Quik M, Di Monte DA.
PMID: 11640907 [PubMed - indexed for MEDLINE]
Related citations

1175. Pathogenesis of Parkinson's disease.
Sherer TB, Betarbet R, Greenamyre JT.
PMID: 11569943 [PubMed - indexed for MEDLINE]
Related citations

1176. **1-Methyl-4-phenyl-pyridinium increases S-adenosyl-L-methionine dependent phospholipid methylation.**
Lee ES, Charlton CG.
Pharmacol Biochem Behav. 2001 Sep;70(1):105-14.
PMID: 11566147 [PubMed - indexed for MEDLINE]

Related citations

1177. **Parkinson disease: etiology, pathogenesis and future of gene therapy.**
Shastry BS.
PMID: 11535288 [PubMed - indexed for MEDLINE]

Related citations

1178. **Parkinsonism and occupational exposure to pesticides.**
Engel LS, Checkoway H, Keifer MC, Seixas NS, Longstreth WT Jr, Scott KC, Hudnell K, Anger WK, Camicioli R.
PMID: 11511745 [PubMed - indexed for MEDLINE] [Free PMC Article]

Related citations

1179. **Epidemiology of multiple system atrophy. ESGAP Consortium, European Study Group on Atypical Parkinsonisms.**
PMID: 11487219 [PubMed - indexed for MEDLINE]
1180. **Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson's disease.**
Uversky VN, Li J, Fink AL.
PMID: 11445065 [PubMed - indexed for MEDLINE]

1181. **Environmental risk factors and Parkinson's disease: a metaanalysis.**
Priyadarshi A, Khuder SA, Schaub EA, Priyadarshi SS.
PMID: 11437458 [PubMed - indexed for MEDLINE]

1182. **GAPDH knockdown rescues mesencephalic dopaminergic neurons from MPP+-induced apoptosis.**
Fukuhara Y, Takeshima T, Kashiwaya Y, Shimoda K, Ishitani R, Nakashima K.
PMID: 11435944 [PubMed - indexed for MEDLINE]

1183. **Release of dopamine by perfusion with 1-methyl-4-phenylpyridinium ion (MPP+) into the striatum is associated with hydroxyl free radical generation.**
Obata T, Yamanaka Y, Kinemuchi H, Oreland L.
PMID: 11430875 [PubMed - indexed for MEDLINE]

1184. **Autism and Parkinson's disease.**
Woodward G.
PMID: 11425297 [PubMed - indexed for MEDLINE]
1185. **Decreased expression of the NADH:ubiquinone oxidoreductase (complex I) subunit 4 in 1-methyl-4-phenylpyridinium -treated human neuroblastoma SH-SY5Y cells.**

Conn KJ, Ullman MD, Eisenhauer PB, Fine RE, Wells JM.
PMID: 11406316 [PubMed - indexed for MEDLINE]

1186. **Effect of antioxidants on L-glutamate and N-methyl-4-phenylpyridinium ion induced-neurotoxicity in PC12 cells.**

Mazzio E, Huber J, Darling S, Harris N, Soliman KF.
PMID: 11405259 [PubMed - indexed for MEDLINE]

1187. **Allopurinol suppresses para-nonylphenol and 1-methyl-4-phenylpyridinium ion (MPP(+)~-induced hydroxyl radical generation in rat striatum.**

Obata T, Kubota S, Yamanaka Y.
PMID: 11403945 [PubMed - indexed for MEDLINE]

1188. **Parkinsonism after glycine-derivate exposure.**

Barbosa ER, Leiros da Costa MD, Bacheschi LA, Scaff M, Leite CC.
PMID: 11391760 [PubMed - indexed for MEDLINE]
1189. **Nitric oxide enhances MPP(+)‐induced hydroxyl radical generation via depolarization activated nitric oxide synthase in rat striatum.**
Obata T, Yamanaka Y.
PMID: 11384616 [PubMed - indexed for MEDLINE]

1190. **A case‐control study of Parkinson's disease in urban population of southern Israel.**
Herishanu YO, Medvedovski M, Goldsmith JR, Kordysh E.
PMID: 11383940 [PubMed - indexed for MEDLINE]

1191. **Parkinson's disease, pesticides and mitochondrial dysfunction.**
Jenner P.
PMID: 11311359 [PubMed - indexed for MEDLINE]

1192. **Strain‐dependent susceptibility to MPTP and MPP(+)‐induced parkinsonism is determined by glia.**
Smeyne M, Goloubeva O, Smeyne RJ.
PMID: 11307156 [PubMed - indexed for MEDLINE]

1193. **Selective dopaminergic vulnerability: 3,4‐dihydroxyphenylacetaldehyde targets mitochondria.**
Kristal BS, Conway AD, Brown AM,

1194. Neurotoxicity of the organochlorine insecticide heptachlor to murine striatal dopaminergic pathways.

1195. Prosaptide D5, a retro-inverso 11-mer peptidomimetic, rescued dopaminergic neurons in a model of Parkinson's disease.

1196. L-Deprenyl prevents the cell hypoxia induced by dopaminergic neurotoxins, MPP(+) and beta-carbolinium: a microdialysis study in rats.

1197. Attenuation of paraquat-induced dopaminergic toxicity on the substantia nigra by (-)-deprenyl in vivo.
Liou HH, Chen RC, Chen TH, Tsai YF, Tsai MC.
PMID: 11264021 [PubMed - indexed for MEDLINE]

1198. Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson’s disease?
Hartmann A, Michel PP, Troade J D, Mouatt-Prigent A, Faucheux BA, Ruberg M, Agid Y, Hirsch EC.
PMID: 11259496 [PubMed - indexed for MEDLINE]

1199. [Parkinsonism induced by MPTP and free radical generation].
Obata T, Yamanaka Y.
PMID: 11233301 [PubMed - indexed for MEDLINE]

1200. Low concentrations of 1-methyl-4-phenylpyridinium ion induce caspase-mediated apoptosis in human SH-SY5Y neuroblastoma cells.
Gómez C, Reiriz J, Piqué M, Gil J, Ferrer I, Ambrosio S.
PMID: 11223917 [PubMed - indexed for MEDLINE]

1201. Rats and risk.
Morris S, Powell D.
PMID: 11214155 [PubMed - indexed for MEDLINE]
Related citations

Helmuth L.
No abstract available.
PMID: 11184997 [PubMed - indexed for MEDLINE]
Related citations

1203. Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism.
Chun HS, Gibson GE, DeGiorgio LA, Zhang H, Kidd VJ, Son JH.
PMID: 11181820 [PubMed - indexed for MEDLINE]
Related citations

1204. Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult.
Lee M, Hyun D, Halliwell B, Jenner P.
PMID: 11181819 [PubMed - indexed for MEDLINE]
Related citations

1205. Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson's disease.
Teismann P, Ferger B.
PMID: 11180504 [PubMed - indexed for MEDLINE]
Related citations

1206. Chronic reduction in complex I function alters calcium signaling in SH-SY5Y neuroblastoma cells.
Sherer TB, Trimmer PA, Borland K,
Parks JK, Bennett JP Jr, Tuttle JB.
Brain Res. 2001 Feb 9;891(1-2):94-105.
PMID: 11164812 [PubMed - indexed for MEDLINE]
Related citations

1207. Pesticides and parkinsonism: is there an etiological link?
Lockwood AH.
PMID: 11148671 [PubMed - indexed for MEDLINE]
Related citations

1208. Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson's disease.
Chinopoulos C, Adam-Vizi V.
PMID: 11146003 [PubMed - indexed for MEDLINE]
Related citations

1209. Hepatic disposition of neurotoxins and pesticides.
Yang MC, McLean AJ, Rivory LP, Le Couteur DG.
PMID: 11140828 [PubMed - indexed for MEDLINE]
Related citations

1210. CGP 3466 protects dopaminergic neurons in lesion models of Parkinson's disease.
Waldmeier PC, Spooren WP, Hengerer B.
PMID: 11138845 [PubMed - indexed for MEDLINE]
1211. The neurobehavioral effects of subchronic manganese exposure in the presence and absence of pre-parkinsonism.
Witholt R, Gwiazda RH, Smith DR.
PMID: 11120391 [PubMed - indexed for MEDLINE]

1212. Increased striatal dopamine turnover following acute administration of rotenone to mice.
Thiffault C, Langston JW, Di Monte DA.
PMID: 11102582 [PubMed - indexed for MEDLINE]

1213. Chronic systemic pesticide exposure reproduces features of Parkinson's disease.
PMID: 11100151 [PubMed - indexed for MEDLINE]

1214. A new link between pesticides and Parkinson's disease.
Giasson BI, Lee VM.
No abstract available.
PMID: 11100135 [PubMed - indexed for MEDLINE]

1215. Pesticide use linked to Parkinson's disease.
Adam D.
PMID: 11089940 [PubMed - indexed for MEDLINE]

Related citations

1216. The antioxidant ebselen prevents neurotoxicity and clinical symptoms in a primate model of Parkinson's disease.
Moussaoui S, Obinu MC, Daniel N, Reibaud M, Blanchard V, Imperato A.
PMID: 11085889 [PubMed - indexed for MEDLINE]

Related citations

Talpade DJ, Greene JG, Higgins DS Jr, Greenamyre JT.
PMID: 11080215 [PubMed - indexed for MEDLINE]

Related citations

1218. Protective effects of riluzole on dopamine neurons: involvement of oxidative stress and cellular energy metabolism.
Storch A, Burkhardt K, Ludolph AC, Schwarz J.
PMID: 11080177 [PubMed - indexed for MEDLINE]

Related citations

1219. Parkinson's disease linked with pesticide
Berger A.
BMJ. 2000 Nov 11;321(7270):1175A.
No abstract available.
PMID: 11073503 [PubMed - as supplied]
Effect of 1,25-dihydroxyvitamin D(3) on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by L-buthionine sulfoximine and 1-methyl-4-phenylpyridine.
Shinpo K, Kikuchi S, Sasaki H, Moriwaka F, Tashiro K.
PMID: 11054806 [PubMed - indexed for MEDLINE]

Paraoxonase polymorphisms, pesticide exposure and Parkinson's disease in a Caucasian population.
Taylor MC, Le Couteur DG, Mellick GD, Board PG.
PMID: 11041276 [PubMed - indexed for MEDLINE]

Prevention of 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced nitration of tyrosine hydroxylase and neurotoxicity by EUK-134, a superoxide dismutase and catalase mimetic, in cultured dopaminergic neurons.
Pong K, Doctrow SR, Baudry M.
PMID: 11036157 [PubMed - indexed for MEDLINE]

A meta-analysis of Parkinson's disease and exposure to pesticides.
Priyadarshi A, Khuder SA, Schaub EA, Shrivastava S.
Tüchsen F, Jensen AA.
Related citations

1225. Extracellular accumulation of nitric oxide, hydrogen peroxide, and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition, and/or lipopolysaccharide-induced activation.
McNaught KS, Jenner P.
PMID: 10974207 [PubMed-indexed for MEDLINE]
Related citations

1226. Disrupted mitochondrial electron transport function increases expression of anti-apoptotic bcl-2 and bcl-X(L) proteins in SH-SY5Y neuroblastoma and in Parkinson disease cybrid cells through oxidative stress.
Veech GA, Dennis J, Keeney PM, Fall CP, Swerdlow RH, Parker WD Jr, Bennett JP Jr.
PMID: 10972966 [PubMed-indexed for MEDLINE]
Related citations

1227. The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation.
novel mechanism of toxicity.
Lotharius J, O'Malley KL.
J Biol Chem. 2000 Dec
8;275(49):38581-8.
PMID: 10969076 [PubMed - indexed for MEDLINE] Free Article Related citations

1228. MPP(+) increases the vulnerability to oxidative stress rather than directly mediating oxidative damage in human neuroblastoma cells.
Lee HS, Park CW, Kim YS.
PMID: 10964495 [PubMed - indexed for MEDLINE] Related citations

1229. Protective effect of melatonin against the 1-methyl-4-phenylpyridinium-induced inhibition of complex I of the mitochondrial respiratory chain.
Absi E, Ayala A, Machado A, Parrado J.
PMID: 10949539 [PubMed - indexed for MEDLINE] Related citations

1230. Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson's disease?
Thiruchelvam M, Brockel BJ, Richfield EK, Baggs RB, Cory-Slechta DA.
PMID: 10930548 [PubMed - indexed for MEDLINE] Related citations

1231. The selective toxicity of 1-methyl-4-phenylpyridinium to dopaminergic neurons: the role of mitochondrial complex I and reactive oxygen species revisited.
Nakamura K, Bindokas VP, Marks JD, Wright DA, Frim DM, Miller RJ, Kang UJ.
Related citations

1232. Ethylenebisdithiocarbamate enhances MPTP-induced striatal dopamine depletion in mice.
McGrew DM, Irwin I, Langston JW.
PMID: 10894120 [PubMed - indexed for MEDLINE]
Related citations

1233. Dopamine transporter function assessed by antisense knockdown in the rat: protection from dopamine neurotoxicity.
Van Kampen JM, McGeer EG, Stoessl AJ.
PMID: 10881039 [PubMed - indexed for MEDLINE]
Related citations

1234. Exposure to home pesticides linked to Parkinson disease.
Stephenson J.
PMID: 10865282 [PubMed - indexed for MEDLINE]
Related citations

1235. Effect of MAO-B inhibitors on MPP+ toxicity in Vivo.
Wu RM, Chen RC, Chiuheh CC.
PMID: 10863544 [PubMed - indexed for MEDLINE]
Related citations
1236. *3,4-Dihydroxyphenylacetaldehyde potentiates the toxic effects of metabolic stress in PC12 cells.*

Related citations

1237. *Manganese: brain transport and emerging research needs.*

Related citations

1238. *Estrogen reduces acute striatal dopamine responses in vivo to the neurotoxin MPP+ in female, but not male rats.*

Related citations

Related citations

1240. *Inhibition of neuronal nitric oxide synthase protects against MPTP toxicity.*

Ritz B, Yu F.

Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL.

1243. Enhanced vulnerability to oxidative stress by alpha-synuclein mutations and C-terminal truncation.
Kanda S, Bishop JF, Eglitis MA, Yang Y, Mouradian MM.
PMID: 10799759 [PubMed - indexed for MEDLINE]

1244. Metabolic stress in PC12 cells induces the formation of the endogenous dopaminergic neurotoxin, 3,4-dihydroxyphenylacetaldehyde.
Lamensdorff I, Eisenhofer G, Harvey-White J, Hayakawa Y, Kirk K, Kopin IJ.
PMID: 10797558 [PubMed - indexed for MEDLINE]
Related citations

1245. **Vulnerability to pesticide neurotoxicity is a lifetime issue.**
Weiss B.
PMID: 10794386 [PubMed - indexed for MEDLINE]
Related citations

1246. **Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson's disease.**
Offen D, Sherki Y, Melamed E, Fridkin M, Brenneman DE, Gozes I.
PMID: 10784133 [PubMed - indexed for MEDLINE]
Related citations

1247. **[Pesticide poisoning].**
Harry P.
French.
PMID: 10748667 [PubMed - indexed for MEDLINE]
Related citations

1248. **Interaction among mitochondria, mitogen-activated protein kinases, and nuclear factor-kappaB in cellular models of Parkinson's disease.**
PMID: 10737593 [PubMed - indexed for MEDLINE]
Related citations

1249. **Effect of MPTP on brain mitochondrial H2O2 and ATP production and on dopamine and DOPAC in the striatum.**
PMID: 10731084 [PubMed - indexed for MEDLINE]

Related citations

1250. **The protective effect of riluzole in the MPTP model of Parkinson's disease in mice is not due to a decrease in MPP(+) accumulation.**
Boireau A, Dubedat P, Bordier F, Imperato A, Moussaoui S.
PMID: 10727711 [PubMed - indexed for MEDLINE]

Related citations

1251. **Potassium chloride depolarization enhances MPP+-induced hydroxyl radical generation in the rat striatum.**
Obata T, Aomine M, Yamanaka Y.
PMID: 10678780 [PubMed - indexed for MEDLINE]

Related citations

1252. **Organochlorine insecticides in substantia nigra in Parkinson's disease.**
Corrigan FM, Wienburg CL, Shore RF, Daniel SE, Mann D.
PMID: 10706031 [PubMed - indexed for MEDLINE]

Related citations

1253. **MPP(+) -induced mitochondrial dysfunction is potentiated by dopamine.**
Boada J, Cutillas B, Roig T, Bermúdez J, Ambrosio S.
PMID: 10679305 [PubMed - indexed for MEDLINE]
Related citations

1254. **1-Methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol) is toxic to dopaminergic neuroblastoma SH-SY5Y cells via impairment of cellular energy metabolism.**
Storch A, Kaftan A, Burkhardt K, Schwarz J.
PMID: 10650131 [PubMed - indexed for MEDLINE]

1255. **The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson's disease.**
Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA.
PMID: 11124998 [PubMed - indexed for MEDLINE] [Free Article]
Related citations

1256. **Pesticide study aids Parkinson research.**
Friedrich MJ.
PMID: 10605962 [PubMed - indexed for MEDLINE]
Related citations

1257. **The D-loop structure of human mtDNA is destabilized directly by 1-methyl-4-phenylpyridinium ion (MPP+), a parkinsonism-causing toxin.**
Umeda S, Muta T, Ohsato T, Takamatsu C, Hamasaki N, Kang D.
PMID: 10601867 [PubMed - indexed for
1258. **Environmental risk factors in Parkinson's disease.**
Kuopio AM, Marttila RJ, Helenius H, Rinne UK.
PMID: 10584666 [PubMed - indexed for MEDLINE]

1259. **Environmental, medical, and family history risk factors for Parkinson's disease: a New England-based case control study.**
Taylor CA, Saint-Hilaire MH, Cupples LA, Thomas CA, Burchard AE, Feldman RG, Myers RH.
PMID: 10581500 [PubMed - indexed for MEDLINE]

1260. **Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic cocultures.**
McNaught KS, Jenner P.
PMID: 10582607 [PubMed - indexed for MEDLINE]

1261. **Local striatal infusion of MPP+ does not result in increased hydroxylation after systemic administration of 4-hydroxybenzoate.**
Ste-Marie L, Vachon L, Bémeur C, Lambert J, Montgomery J.
Free Radic Biol Med. 1999 Nov;27(9-
1262. 1-Methyl-4-phenyl-2,3-dihydropyridinium is transformed by ubiquinone to the selective nigrostriatal toxin 1-methyl-4-phenylpyridinium.
Related citations

1263. Multiple antioxidants in the prevention and treatment of Parkinson's disease.
Related citations

1264. Inhibitors of mitochondrial respiration, iron (II), and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: potential implications to Parkinson's disease.
Related citations

1265. Heptachlor alters expression and function of dopamine transporters.
Werneck AL, Alvarenga H.
PMID: 10450337 [PubMed-indexed for MEDLINE]

Joost O, Taylor CA, Thomas CA, Cupples LA, Saint-Hilaire MH, Feldman RG, Baldwin CT, Myers RH.
PMID: 10435495 [PubMed-indexed for MEDLINE]

1268. The non-NMDA glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline, but not NMDA antagonists, block the intrastriatal neurotoxic effect of MPP+.
Merino M, Vizuete ML, Cano J, Machado A.
PMID: 10428073 [PubMed-indexed for MEDLINE]

Wong SS, Li RH, Stadlin A.
Brain Res. 1999 Jul 31;836(1-2):237-44.
PMID: 10415427 [PubMed-indexed for MEDLINE]
1270. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease.
Duan W, Mattson MP.
PMID: 10398297 [PubMed - indexed for MEDLINE]
Related citations

1271. MPP+ inhibits proliferation of PC12 cells by a p21(WAF1/Cip1)-dependent pathway and induces cell death in cells lacking p21(WAF1/Cip1).
PMID: 10388522 [PubMed - indexed for MEDLINE]
Related citations

1272. Depolarization of in situ mitochondria due to hydrogen peroxide-induced oxidative stress in nerve terminals: inhibition of alpha-ketoglutarate dehydrogenase.
Chinopoulos C, Tretter L, Adam-Vizi V.
PMID: 10386974 [PubMed - indexed for MEDLINE]
Related citations

1273. Studies on the pyrrolinone metabolites derived from the tobacco alkaloid 1-methyl-2-(3-pyridinyl)pyrrole (beta-nicotyrine).
1274. **Pesticides and Parkinson's disease.**
Le Couteur DG, McLean AJ, Taylor MC, Woodham BL, Board PG.
PMID: 10349500 [PubMed - indexed for MEDLINE]
Related citations

1275. **Reserpine prevents hydroxyl radical formation by MPP+ in rat striatum.**
Obata T.
PMID: 10320725 [PubMed - indexed for MEDLINE]
Related citations

1276. **Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism.**
Related citations

1277. **Epidemiologic approaches to the study of Parkinson's disease etiology.**
Checkoway H, Nelson LM.
PMID: 10230846 [PubMed - indexed for MEDLINE]
Related citations
1278. **Acute and reversible parkinsonism due to organophosphate pesticide intoxication: five cases.**
Bhatt MH, Elias MA, Mankodi AK.
PMID: 10227636 [PubMed - indexed for MEDLINE]
Related citations

1279. **Creatine and cyclocreatine attenuate MPTP neurotoxicity.**
PMID: 10222117 [PubMed - indexed for MEDLINE]
Related citations

1280. **Influence of MPP+ on the state of tubulin polymerisation in NGF-differentiated PC12 cells.**
Cappelletti G, Maggioni MG, Maci R.
PMID: 10213472 [PubMed - indexed for MEDLINE]
Related citations

1281. **Paraquat induced activation of transcription factor AP-1 and apoptosis in PC12 cells.**
Li X, Sun AY.
PMID: 10195331 [PubMed - indexed for MEDLINE]
Related citations

1282. **Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss.**
Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ.
PMID: 10095006 [PubMed - indexed for...
1283. **Health effects of chronic high exposure to hexachlorobenzene in a general population sample.**
Sala M, Sunyer J, Otero R, Santiago-Silva M, Ozalla D, Herrero C, To-Figuera J, Kogevinas M, Anto JM, Camps C, Grimalt J.
PMID: 10094287 [PubMed - indexed for MEDLINE]

1284. **Characterization and time course of MPP+ -induced apoptosis in human SH-SY5Y neuroblastoma cells.**
Fall CP, Bennett JP Jr.
PMID: 10082084 [PubMed - indexed for MEDLINE]

1285. **Transient severe parkinsonism after acute organophosphate poisoning.**
Müller-Vahl KR, Kolbe H, Dengler R.

1286. **Gene-toxicant link to Parkinson's disease.**
[No authors listed]

1287. **Biosynthesis of a parkinsonism-preventing substance, 1-methyl-1,2,3,4-**
tetrahydroisoquinoline, is inhibited by parkinsonism-inducing compounds in rat brain mitochondrial fraction.
Yamakawa T, Ohta S.
PMID: 10025582 [PubMed - indexed for MEDLINE]

1288. Glutathione transferase polymorphism and Parkinson's disease.
Paolini M, Biagi GL, Cantelli-Forti G.
PMID: 10023978 [PubMed - indexed for MEDLINE]

1289. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons.
Liss B, Bruns R, Roeper J.

1290. The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism.
PMID: 9989245 [PubMed - indexed for MEDLINE]

1291. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons.

1296. Genetic epidemiology of Parkinson's disease.
Payami H, Zareparsi S.
PMID: 9877530 [PubMed - indexed for MEDLINE]

1297. [Delayed effects of organochlorine pesticides in man],
Nunes MV, Tajara EH.
PMID: 9876430 [PubMed - indexed for MEDLINE]

1298. Conformationally restricted analogues of nicotine and anabasine.
PMID: 9873508 [PubMed - indexed for MEDLINE]

1299. Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos.
Son JH, Chun HS, Joh TH, Cho S, Conti B, Lee JW.

Related citations
1300. Mice deficient in group IV cytosolic phospholipase A2 are resistant to MPTP neurotoxicity.
Klivenyi P, Beal MF, Ferrante RJ, Andreassen OA, Wermer M, Chin MR, Bonventre JV.
PMID: 9832165 [PubMed - indexed for MEDLINE]
Related citations

1301. Paraquat-induced cell death in PC12 cells.
Yang WL, Sun AY.
PMID: 9814549 [PubMed - indexed for MEDLINE]
Related citations

1302. Genetic and environmental risk factors for Parkinson's disease in a Chinese population.
Chan DK, Woo J, Ho SC, Pang CP, Law LK, Ng PW, Hung WT, Kwok T, Hui E, Orr K, Leung MF, Kay R.
Related citations

Culebras A.
PMID: 9810796 [PubMed - indexed for MEDLINE]
Related citations

1304. Parkinson's disease, pesticides, and glutathione transferase polymorphisms.
Menegon A, Board PG, Blackburn AC,
Mellick GD, Le Couteur DG.
PMID: 9802272 [PubMed - indexed for MEDLINE]
Related citations

1305. Parkinson's disease: nature meets nurture.
Golbe L.
No abstract available.
PMID: 9802266 [PubMed - indexed for MEDLINE]
Related citations

1306. Cyclosporin inhibition of apoptosis induced by mitochondrial complex I toxins.
Seaton TA, Cooper JM, Schapira AH.
PMID: 9795106 [PubMed - indexed for MEDLINE]
Related citations

1307. The epidemiology of Parkinson's disease in an Australian population.
McCann SJ, LeCouteur DG, Green AC, Brayne C, Johnson AG, Chan D, McManus ME, Pond SM.
PMID: 9778597 [PubMed - indexed for MEDLINE]
Related citations

1308. Paraquat: a useful tool for the in vivo study of mechanisms of neuronal cell death.
Corasaniti MT, Strongoli MC, Rotiroti D, Bagetta G, Nisticò G.
PMID: 9764419 [PubMed - indexed for MEDLINE]
Related citations
1309. **Epidemiology versus genetics in Parkinson's disease: progress in resolving an age-old debate.**

Langston JW.
PMID: 9749572 [PubMed - indexed for MEDLINE]
-related citations

1310. **A case-control study of occupational and environmental risk factors for Parkinson's disease in the Emilia-Romagna region of Italy.**

PMID: 9745932 [PubMed - indexed for MEDLINE]
-related citations

1311. **Micronuclei analysis in lymphocytes of pesticide sprayers from Concepción, Chile.**

Venegas W, Zapata I, Carbonell E, Marcos R.
PMID: 9728796 [PubMed - indexed for MEDLINE]
-related citations

1312. **Catechol is the major product of salicylate hydroxylation in 1-methyl-4-phenylpyridinium ion treated rats.**

Sam E, Sarre S, Michotte Y, Verbeke N.
PMID: 9725471 [PubMed - indexed for MEDLINE]
-related citations

1313. **7-Nitroindazole prevents dopamine depletion caused by low concentrations**
of MPP+ in rat striatal slices.
Cutillas B, Espejo M, Ambrosio S.
PMID: 9694040 [PubMed - indexed for MEDLINE]
Related citations

1314. L1 neural cell adhesion molecule is a survival factor for fetal dopaminergic neurons.
Hulley P, Schachner M, Lübbert H.
PMID: 9671969 [PubMed - indexed for MEDLINE]
Related citations

1315. Structural significance of azaheterocyclic amines related to Parkinson's disease for dopamine transporter.
Eur J Pharmacol. 1998 May 1;348(1):77-84.
PMID: 9650834 [PubMed - indexed for MEDLINE]
Related citations

1316. Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion.
Cassarino DS, Fall CP, Smith TS, Bennett JP Jr.
PMID: 9648878 [PubMed - indexed for MEDLINE]
Related citations

1317. Genetic and environmental risk factors
in Parkinson's disease.
Veldman BA, Wijn AM, Knoers N, Praamstra P, Horstink MW.
PMID: 9637199 [PubMed - indexed for MEDLINE]

1318. Melatonin protects nigral dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity in rats.
PMID: 9605485 [PubMed - indexed for MEDLINE]

1319. A case-referent study of extrapyramidal signs (preparkinsonism) in rural communities of Israel.
Herishanu YO, Kordysh E, Goldsmith JR.
PMID: 9604134 [PubMed - indexed for MEDLINE]

1320. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living.
Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ.
PMID: 9595985 [PubMed - indexed for MEDLINE]

Related citations

Related citations

Related citations

Related citations

1326. **The role of glutathione in dopaminergic neuronal survival.**

1327. **Quantitative study of mitochondrial complex I in platelets of parkinsonian patients.**

1328. **Metabolic inhibition enhances selective toxicity of L-DOPA toward mesencephalic dopamine neurons in vitro.**

1329. **Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors.**

1330. **Environmental risk factors for Parkinson's disease in an urban multiethnic community.**
Marder K, Logroscino G, Alfaro B, Mejia H, Halim A, Louis E, Cote L,
Mayeux R.
PMID: 9443493 [PubMed - indexed for MEDLINE]
Related citations

1331. Comparison of key steps in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in rodents.
Sundström E, Samuelsson EB.
PMID: 9396088 [PubMed - indexed for MEDLINE]
Related citations

1332. Rescue of mesencephalic dopamine neurons by anticancer drug cytosine arabinoside.
Michel PP, Ruberg M, Agid Y.
PMID: 9326279 [PubMed - indexed for MEDLINE]
Related citations

1333. Estrogen as a neuromodulator of MPTP-induced neurotoxicity: effects upon striatal dopamine release.
Disshon KA, Dluzen DE.
PMID: 9295188 [PubMed - indexed for MEDLINE]
Related citations

1334. Environmental risk factors and Parkinson's disease: a case-control study in Taiwan.
Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC.
PMID: 9191770 [PubMed - indexed for MEDLINE]
Related citations

1335. 1-Methyl-4-phenyl-1,2,3,6-

Related citations

Related citations

Related citations

Related citations

1339. The epidemiology of Parkinson's disease.
Ben-Shlomo Y.
Baillieres Clin Neurol. 1997
Apr;6(1):55-68. Review.
PMID: 9426868 [PubMed - indexed for MEDLINE]
Related citations

1340. Mitochondrial dysfunction in neurodegeneration.
Cooper JM, Schapira AH.
J Bioenerg Biomembr. 1997
Apr;29(2):175-83. Review.
PMID: 9239542 [PubMed - indexed for MEDLINE]
Related citations

1341. Basic toxicology of pesticides.
Costa LG.
PMID: 9220485 [PubMed - indexed for MEDLINE]
Related citations

1342. Protein from chromaffin granules promotes survival of mesencephalic dopaminergic neurons by an EGF-receptor ligand-mediated mechanism.
Krieglstein K, Unsicker K.
PMID: 9086178 [PubMed - indexed for MEDLINE]
Related citations

1343. Altered calcium homeostasis in cells transformed by mitochondria from individuals with Parkinson's disease.
Sheehan JP, Swerdlow RH, Parker WD, Miller SW, Davis RE, Tuttle JB.
PMID: 9048769 [PubMed - indexed for MEDLINE]
Related citations

1344. Alterations in the distribution of
glutathione in the substantia nigra in Parkinson's disease.
Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD.
PMID: 9444566 [PubMed - indexed for MEDLINE]
Related citations

1345. Apoptosis in neurodegenerative disorders.
Mochizuki H, Mori H, Mizuno Y.
PMID: 9120413 [PubMed - indexed for MEDLINE]
Related citations

1346. Transgenic murine dopaminergic neurons expressing human Cu/Zn superoxide dismutase exhibit increased density in culture, but no resistance to methylphenylpyridinium-induced degeneration.
Sanchez-Ramos JR, Song S, Facca A, Basit A, Epstein CJ.
PMID: 8978710 [PubMed - indexed for MEDLINE]
Related citations

1347. L-deprenyl fails to protect mesencephalic dopamine neurons and PC12 cells from the neurotoxic effect of 1-methyl-4-phenylpyridinium ion.
Vaglini F, Pardini C, Cavalletti M, Maggio R, Corsini GU.
PMID: 9001706 [PubMed - indexed for MEDLINE]
Related citations

1348. Mechanism of resistance to NO-induced neurotoxicity in cultured rat dopaminergic neurons.

Related citations

Related citations

Related citations

Related citations

1352. Nigral cell loss produced by infusion of isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. McNaught KS, Thull U, Carrupt PA,

1356. Catecholamine transporters and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity: studies comparing the cloned human noradrenaline and human dopamine transporter.

1357. Possible environmental, occupational, and other etiologic factors for Parkinson's disease: a case-control study in Germany.

1358. [Effect of active immunization with a serotonin-protein conjugate on development of experimental Parkinson's syndrome].

1359. Glutathione depletion potentiates MPTP and MPP+ toxicity in nigral dopaminergic neurones.

1360. Toxicity to PC12 cells of isoquinoline
derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

Related citations

1361. **Herbicide regulation: a case study of Michigan.**

Related citations

1362. **Cell-mediated delivery of brain-derived neurotrophic factor enhances dopamine levels in an MPP+ rat model of substantia nigra degeneration.**

Related citations

1363. **Increase in bax expression in substantia nigra following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment of mice.**

Related citations

1364. **Environment: seeking clues to**
Parkinson's disease.
Butterfield PG.
PMID: 9256779 [PubMed - indexed for MEDLINE]
Related citations

Olanow CW.
PMID: 8988463 [PubMed - indexed for MEDLINE]
Related citations

1366. Methylphenylpyridium ion (MPP+) enhances glutamate-induced cytotoxicity against dopaminergic neurons in cultured rat mesencephalon.
PMID: 8838574 [PubMed - indexed for MEDLINE]
Related citations

1367. Uptake of 1-methyl-4-phenylpyridinium ion (MPP+) and ATP content in synaptosomes.
Matsunaga M, Shirane Y, Aiuchi T, Nakamura Y, Nakaya K.
PMID: 8820906 [PubMed - indexed for MEDLINE]
Related citations

1368. Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridinium.
Related citations

1369. beta-Carbolinium cations, endogenous MPP+ analogs, in the lumbar cerebrospinal fluid of patients with Parkinson's disease.
Related citations

1370. Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons.
Related citations

1371. Chronic effects of single intrastriatal injections of 6-hydroxydopamine or 1-methyl-4-phenylpyridinium studied by microdialysis in freely moving rats.
Related citations

1372. Radical formation site of cerebral complex I and Parkinson's disease.
Fukushima T, Tawara T, Isobe A, Hojo N, Shiwaku K, Yamane Y.
Comparison of cytotoxicity of a quaternary pyridinium metabolite of haloperidol (HP+) with neurotoxin N-methyl-4-phenylpyridinium (MPP+) towards cultured dopaminergic neuroblastoma cells.
Fang J, Zuo D, Yu PH.
PMID: 8584620 [PubMed - indexed for MEDLINE]

Assay of [3H]dihydrorotenone binding to complex I in intact human platelets.
Blandini F, Greenamyre JT.
PMID: 8585613 [PubMed - indexed for MEDLINE]

Survival of and 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity against dopaminergic neurons in coculture of rat mesencephalon with their target on non-target regions.
Akaneya Y, Takahashi M, Hatanaka H.
PMID: 7501301 [PubMed - indexed for MEDLINE]

A morphometric analysis of bipolar and multipolar TH-IR neurons treated with the neurotoxin MPP+ in co-cultures from mesencephalon and striatum of embryonic C57BL/6 mice.
Koutsilieri E, Chen TS, Kruzik P, Rausch WD.
1377. Inhibition of alpha-ketoglutarate dehydrogenase by isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
PMID: 7662887 [PubMed - indexed for MEDLINE]

1378. Effects of agricultural work and other proxy-derived case-control data on Parkinson's disease risk estimates.
Semchuk KM, Love EJ.
PMID: 7709917 [PubMed - indexed for MEDLINE]

1379. The use of plants for environmental monitoring and assessment.
Wang W, Freemark K.
PMID: 7541343 [PubMed - indexed for MEDLINE]

1380. Methyl-beta-carboline analogs of MPP+ cause nigrostriatal toxicity after substantia nigra injections in rats.
Brain Res. 1995 Mar 27;675(1-2):279-
88. PMID: 7796140 [PubMed - indexed for MEDLINE]

Related citations

1381. Biphasic effects of MPP+, a possible parkinsonism inducer, on dopamine content and tyrosine hydroxylase mRNA expression in PC12 cells.
PMID: 7599536 [PubMed - indexed for MEDLINE]

Related citations

1382. Cerebrospinal dopamine metabolites in rats after intrastriatal administration of 6-hydroxydopamine or 1-methyl-4-phenylpyridinium ion.
Espino A, Llorens J, Calopa M, Bartrons R, Rodriguez-Farré E, Ambrosio S.
PMID: 7712161 [PubMed - indexed for MEDLINE]

Related citations

1383. MPP+ selectively affects calcium homeostasis in mesencephalic cell cultures from embryonal C57/Bl6 mice.
Chen TS, Koutsilieri E, Rausch WD.
PMID: 8962685 [PubMed - indexed for MEDLINE]

Related citations

1384. 1-Trichloromethyl-1,2,3,4-tetrahydro-beta-carboline, a new inhibitor of complex I.
Janetzky B, God R, Bringmann G, Reichmann H.
PMID: 8821063 [PubMed - indexed for MEDLINE]
1385. Cyclic AMP promotes the survival of dopaminergic neurons in vitro and protects them from the toxic effects of MPP+
Hulley P, Hartikka J, Lübbert H.
PMID: 8821058 [PubMed-indexed for MEDLINE]

1386. Neuronal protective and rescue effects of deprenyl against MPP+ dopaminergic toxicity.
Wu RM, Murphy DL, Chiueh CC.
PMID: 8748663 [PubMed-indexed for MEDLINE]

Charalambous A, Mangner TJ, Kilbourn MR.
PMID: 7735172 [PubMed-indexed for MEDLINE]

1388. Antioxidant mechanism and protection of nigral neurons against MPP+ toxicity by deprenyl (selegiline).
Wu RM, Mohanakumar KP, Murphy DL, Chiueh CC.
PMID: 7832430 [PubMed-indexed for MEDLINE]

1389. Complex I inhibitors induce dose-dependent apoptosis in PC12 cells.
relevance to Parkinson's disease.
Hartley A, Stone JM, Heron C, Cooper JM, Schapira AH.
PMID: 7931358 [PubMed - indexed for MEDLINE]
Related citations

1390. 1-Methyl-4-phenylpyridinium (MPP+)-induced cell death in PC12 cells: inhibitory effects of several drugs.
Itano Y, Kitamura Y, Nomura Y.
PMID: 7849570 [PubMed - indexed for MEDLINE]
Related citations

1391. Features of the parkinsonian syndrome induced experimentally by a deficit of nigrostriatal dopamine and stimulation of cholinergic neurons of the caudate nuclei.
Kryzhanovskii GN, Atadzhanov MA, Voronina TA, Nerobkova LN.
PMID: 7715769 [PubMed - indexed for MEDLINE]
Related citations

1392. Riluzole and experimental parkinsonism: partial antagonism of MPP(+) -induced increase in striatal extracellular dopamine in rats in vivo.
Boireau A, Miquet JM, Dubédat P, Meunier M, Doble A.
PMID: 7865766 [PubMed - indexed for MEDLINE]
Related citations

Culleen LE.
PMID: 7804650 [PubMed - indexed for MEDLINE]
Related citations

Casey PB, Thompson JP, Vale JA.
PMID: 7946506 [PubMed - indexed for MEDLINE]
Related citations

1395. Parkinsonism after chronic exposure to the fungicide maneb (manganese ethylene-bis-dithiocarbamate).
Meco G, Bonifati V, Vanacore N, Fabrizio E.
Related citations

1396. Psychological characteristics and subjective intolerance for xenobiotic agents of normal young adults with trait shyness and defensiveness. A parkinsonian-like personality type?
Bell IR, Schwartz GE, Amend D, Peterson JM, Kaszniak AW, Miller CS.
PMID: 8021635 [PubMed - indexed for MEDLINE]
Related citations

1397. Reliability of environmental and occupational exposure data provided by surrogate respondents in a case-control study of Parkinson's disease.
Wang FL, Semchuk KM, Love EJ.
Related citations

1398. Parkinson's disease and brain levels of organochlorine pesticides.
Fleming L, Mann JB, Bean J, Briggle T, Sanchez-Ramos JR.
PMID: 7517654 [PubMed-indexed for MEDLINE]

Related citations

1399. Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat.
Frim DM, Uhler TA, Galpern WR, Beal MF, Breakefield XO, Isacson O.

Related citations

1400. In brown Norway rats, MPP+ is accumulated in the nigrostriatal dopaminergic terminals but it is not neurotoxic: a model of natural resistance to MPTP toxicity.
Zuddas A, Fascetti F, Corsini GU, Piccardi MP.
PMID: 8200437 [PubMed-indexed for MEDLINE]

Related citations

Cobuzzi RJ Jr, Neafsey EJ, Collins MA.
PMID: 8133278 [PubMed - indexed for MEDLINE]
Related citations

1402. Risk-factors for Parkinson's disease: case-control study in the province of Cáceres, Spain.
Morano A, Jiménez-Jiménez FJ, Molina JA, Antolín MA.
PMID: 8030397 [PubMed - indexed for MEDLINE]
Related citations

1403. A case-control study of Parkinson's disease in a horticultural region of British Columbia.
Hertzman C, Wiens M, Snow B, Kelly S, Calne D.
PMID: 8139607 [PubMed - indexed for MEDLINE]
Related citations

1404. Glutamatergic drugs in Parkinson's disease.
Lange KW, Riederer P.
PMID: 7997066 [PubMed - indexed for MEDLINE]
Related citations

1405. Neurotrophin-4/5 is a survival factor for embryonic midbrain dopaminergic neurons in enriched cultures.
Hynes MA, Poulsen K, Armanini M, Berkemeier L, Phillips H, Rosenthal A.
PMID: 7908342 [PubMed - indexed for MEDLINE]
Related citations
1406. [Serotonin antibodies and their possible role in parkinsonism].
Kryzhanovskii GN, Man'kovskii NB, Karaban' IN, Magaeva SV, Trekova NA, Vetrilé LA, Basharova LA, Atadzhanov MA, Golubev KM.
PMID: 7900444 [PubMed - indexed for MEDLINE]
Related citations

1407. Cerebrospinal monoamine metabolites and amino acid content in patients with parkinsonian syndrome and rats lesioned with MPP+.
Espino A, Ambrosio S, Bartrons R, Bendahan G, Calopa M.
PMID: 7710669 [PubMed - indexed for MEDLINE]
Related citations

1408. Dopamine transporter expression confers cytotoxicity to low doses of the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium.
Pifl C, Giros B, Caron MG.
Related citations

1409. Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds.
Tipton KF, Singer TP.
PMID: 8376979 [PubMed - indexed for MEDLINE]
Related citations

1410. Acetylcholinesterase inhibition by 1-
methyl-4-phenylpyridinium ion, a bioactivated metabolite of MPTP.
Zang LY, Misra HP.
Mol Cell Biochem. 1993 Sep 22;126(2):93-100.
PMID: 8302294 [PubMed-indexed for MEDLINE]

Related citations

1411. Risk factors for Parkinson's disease.
Hubble JP, Cao T, Hassanein RE, Neuberger JS, Koller WC.
PMID: 8414014 [PubMed-indexed for MEDLINE]

Related citations

Golbe LI.
PMID: 8414005 [PubMed-indexed for MEDLINE]

Related citations

1413. Dopamine transporter mutants selectively enhance MPP+ transport.
Kitayama S, Wang JB, Uhl GR.
PMID: 8310426 [PubMed-indexed for MEDLINE]

Related citations

Willets JM, Lunec J, Williams AC, Griffiths HR.
PMID: 8224447 [PubMed-indexed for MEDLINE]

Related citations
1415. Parkinson's disease: a test of the multifactorial etiologic hypothesis.
Related citations

Related citations

1417. [Role of the striatal serotonergic apparatus in Parkinsonian syndrome].
Related citations

1418. NMDA antagonists partially protect against MPTP induced neurotoxicity in mice.
Related citations

1419. Metabolic aspects of the behavior of MPTP and some analogues.
1420. [The characteristics of a parkinsonian syndrome induced in an experiment by a deficiency of nigrostriatal dopamine and by stimulation of the cholinergic neurons of the caudate nucleus].
Kryzhanovskii GN, Atadzhanov MA, Voronina TA, Nerobkova LN.
PMID: 8160497 [PubMed - indexed for MEDLINE]

1421. Uptake and accumulation of 1-methyl-4-phenylpyridinium by rat liver mitochondria measured using an ion-selective electrode.
Davey GP, Tipton KF, Murphy MP.

1422. Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium.
Liu Y, Roghani A, Edwards RH.

1423. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter.
Liu Y, Peter D, Roghani A, Schuldiner S, Privé GG, Eisenberg D, Brecha N, Edwards RH.
PMID: 1505023 [PubMed - indexed for MEDLINE]
1424. Quantitative autoradiography of dihydrorotenone binding to complex I of the electron transport chain.
Greenamyre JT, Higgins DS, Eller RV.
PMID: 1629744 [PubMed - indexed for MEDLINE]
Related citations

1425. MK-801 prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in primates.
PMID: 1629743 [PubMed - indexed for MEDLINE]
Related citations

1426. Parkinsonism-inducing neurotoxin MPP+: uptake and toxicity in nonneuronal COS cells expressing dopamine transporter cDNA.
Kitayama S, Shimada S, Uhl GR.
PMID: 1642464 [PubMed - indexed for MEDLINE]
Related citations

1427. Parkinson's disease and exposure to agricultural work and pesticide chemicals.
Semchuk KM, Love EJ, Lee RG.
PMID: 1620342 [PubMed - indexed for MEDLINE]
Related citations

1428. Mitochondrial mechanisms of neurotoxicity.
Nicklas WJ, Saporito M, Basma A, Geller HM, Heikkila RE.
available.
PMID: 1637057 [PubMed - indexed for MEDLINE]

Related citations

1429. Life-style and dietary factors early and late in Parkinson's disease.
Vieregge P, von Maravic C, Friedrich HJ.
PMID: 1623441 [PubMed - indexed for MEDLINE]

Related citations

1430. Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.

Related citations

1431. 1-Methyl-4-phenylpyridinium (MPP+) but not 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) serves as methyl donor for dopamine: a possible mechanism of action.
Charlton CG.
PMID: 1590912 [PubMed - indexed for MEDLINE]

Related citations

1432. Search for neurotoxins structurally related to 1-methyl-4-phenylpyridine (MPP+) in the pathogenesis of Parkinson's disease.
Ikeda H, Markey CJ, Markey SP.
The relationships between aging, monoamine oxidase, striatal dopamine and the effects of MPTP in C57BL/6 mice: a critical reassessment.
Irwin I, Finnegan KT, Delanney LE, Di Monte D, Langston JW.
PMID: 1611516 [PubMed - indexed for MEDLINE]

Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement.
Cleeter MW, Cooper JM, Schapira AH.
PMID: 1729421 [PubMed - indexed for MEDLINE]

Acute and persistent parkinsonism after use of diquat.
Sechi GP, Agnetti V, Piredda M, Canu M, Deserra F, Omar HA, Rosati G.
PMID: 1734316 [PubMed - indexed for MEDLINE]

Exposure to well water and pesticides in Parkinson's disease: a case-control study in the Madrid area.
Jiménez-Jiménez FJ, Mateo D, Giménez-Roldán S.
PMID: 1584237 [PubMed - indexed for MEDLINE]
Related citations

Yoshino H, Nakagawa-Hattori Y, Kondo T, Mizuno Y.
PMID: 1347219 [PubMed - indexed for MEDLINE]

Related citations

1438. Therapy of Morbus Parkinson and radical-induced neurotoxicity in the rat--in vivo voltammetric studies.
Wesemann W.
PMID: 1283403 [PubMed - indexed for MEDLINE]

Related citations

PMID: 1940917 [PubMed - indexed for MEDLINE]

Related citations

1440. Dehydration is the first step in the bioactivation of haloperidol to its pyridinium metabolite.
Fang J, Gorrod JW.
PMID: 1755019 [PubMed - indexed for MEDLINE]

Related citations

1441. Selective and nonselective effects of 1-methyl-4-phenylpyridinium on oxygen consumption in rat striatal and
hippocampal slices.
Martin FR, Sanchez-Ramos J, Rosenthal M.
PMID: 1895108 [PubMed - indexed for MEDLINE]
Related citations

1442. The epidemiology of Parkinson's disease. A case-control study of young-onset and old-onset patients.
Stern M, Dulaney E, Gruber SB, Golbe L, Bergen M, Hurtig H, Gollomp S, Stolley P.
PMID: 1953412 [PubMed - indexed for MEDLINE]
Related citations

1443. No relevance to Parkinson's.
Hefti F, Denton TL, Beck KD, Michel PP.
PMID: 1830925 [PubMed - indexed for MEDLINE]
Related citations

1444. Finger tremor after carbon disulfide-based pesticide exposures.
PMID: 1898265 [PubMed - indexed for MEDLINE]
Related citations

1445. A redox reaction between MPP+ and MPDP+ to produce superoxide radicals does not impair mitochondrial function.
Walker MJ, Jenner P, Marsden CD.
PMID: 1651082 [PubMed - indexed for MEDLINE]
1446. **Pesticide poisoning surveillance through regional poison control centers.**
Olson DK, Sax L, Gunderson P, Sioris L.

1447. **Interaction of 1-methyl-4-phenylpyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase.**
Ramsay RR, Krueger MJ, Youngster SK, Gluck MR, Casida JE, Singer TP.
PMID: 2002336 [PubMed - indexed for MEDLINE]

1448. **Environmental risk factors in siblings with Parkinson's disease.**
Wong GF, Gray CS, Hassanein RS, Koller WC.
PMID: 2001187 [PubMed - indexed for MEDLINE]

1449. **Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists.**
Turski L, Bressler K, Rettig KJ, Löschmann PA, Wachtel H.
PMID: 1846943 [PubMed - indexed for MEDLINE]

1450. **Pyridine derivatives: structure-activity relationships causing parkinsonism-like**

symptoms.

Bachurin SO, Tkachenko SE, Lermontova NN.

PMID: 1771272 [PubMed - indexed for MEDLINE]

Related citations

1451. [Parkinson's disease and environmental factors].

Zuber M, Alperovitch A.

PMID: 1754703 [PubMed - indexed for MEDLINE]

Related citations

1452. A pilot study of occupational and environmental risk factors for Parkinson's disease.

Wechsler LS, Checkoway H, Franklin GM, Costa LG.

PMID: 1745430 [PubMed - indexed for MEDLINE]

Related citations

1453. [Clinical and biochemical parameters of parkinsonism induced by 1-methyl-4-phenyl-1,2,2,6-tetrahydropyridine and its methyl-phenyl and methoxy-phenyl derivatives in C57Bl/6 mice].

Lermontova NN, Soliakov LS, Bachurin SO, Serkova TP, Petrova LN, Dranyi OA, Tkachenko SE, Kalashnikov VV.

PMID: 2279092 [PubMed - indexed for MEDLINE]

Related citations

1454. 1-Methyl-4-phenylpyridinium (MPP+) does not exhibit paraquat-like
immunoreactivity.
Houzé P, Chappey O, Gallons H, Scherrmann JM.
PMID: 2237940 [PubMed - indexed for MEDLINE]

Related citations

PMID: 2381528 [PubMed - indexed for MEDLINE]

Related citations

1456. [Environmental factors in the etiology of Parkinson's disease].
PMID: 2207882 [PubMed - indexed for MEDLINE]

Related citations

1457. Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture.
Michel PP, Hefti F.
PMID: 1977925 [PubMed - indexed for MEDLINE]

Related citations

1458. Potential environmental neurotoxins related to 1-methyl-4-phenylpyridinium: selective toxicity of 1-methyl-4-(4'-acetamidophenyl)-pyridinium and 1-methyl-4-cyclohexylpyridinium for dopaminergic neurons in culture.
Michel PP, Dandapani BK, Efange SM, Hefti F.
PMID: 2335192 [PubMed - indexed for MEDLINE]

Related citations

1459. Parkinson's disease.
Marsden CD.
Lancet. 1990 Apr 21;335(8695):948-52.
Review. No abstract available.
PMID: 1691427 [PubMed - indexed for MEDLINE]

Related citations

1460. Change of tyrosine hydroxylase in the parkinsonian brain and in the brain of MPTP-treated mice as revealed by homospecific activity.
Nagatsu T.
PMID: 1975089 [PubMed - indexed for MEDLINE]

Related citations

1461. Dopamine uptake inhibitory capacities of beta-carboline and 3,4-dihydro-beta-carboline analogs of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) oxidation products.
Drucker G, Raikoff K, Neafsey EJ, Collins MA.
PMID: 2137718 [PubMed - indexed for MEDLINE]

Related citations

Rabey JM, Hefti F.
PMID: 2357268 [PubMed - indexed for MEDLINE]
Related citations

1463. **MPTP, MPDP+ and MPP+ cause decreases in dopamine content in mouse brain slices.**
Wilson JA, Doyle TJ, Lau YS.
PMID: 2304632 [PubMed - indexed for MEDLINE]

Related citations

1464. **Follow-up study of early-life protective and risk factors in Parkinson's disease.**
Golbe LI, Farrell TM, Davis PH.
PMID: 2296261 [PubMed - indexed for MEDLINE]

Related citations

1465. **Experimental hemiparkinsonism in the rat following chronic unilateral infusion of MPP+ into the nigrostriatal dopamine pathway—III. Reversal by embryonic nigral dopamine grafts.**
Sirinathsinghji DJ, Dunnett SB, Northrop AJ, Morris BJ.
PMID: 2247221 [PubMed - indexed for MEDLINE]

Related citations

1466. **Poisoning by some insecticides, herbicides and fungicides.**
Mahieu P, Lauwerys R, Dive A, Hantson P.
PMID: 2239069 [PubMed - indexed for MEDLINE]

Related citations

1467. **Aspects of pesticide toxicology.**
Blain PG.
Adverse Drug React Acute Poisoning
PMID: 2190453 [PubMed - indexed for MEDLINE]

1468. Visualization of interleukin-2-like molecules in MPP(+) -lesioned rat brain.
Liang SM, Liang CM, Chiueh CC.
PMID: 2610695 [PubMed - indexed for MEDLINE]

1469. Striatal dopaminergic toxicity following intranigral injection in rats of 2-methyl-norharman, a beta-carbolinium analog of N-methyl-4-phenylpyridinium ion (MPP+).
Neafsey EJ, Drucker G, Raikoff K, Collins MA.
PMID: 2594220 [PubMed - indexed for MEDLINE]

1470. The effect of prenatal treatment with MPTP or MPP+ on the development of dopamine-mediated behaviors in rats.
Weissman EM, Norman AB, Calderon SF, Zubrycki EM, el-Etri MM, Shipley MT, Sanberg PR.
PMID: 2623012 [PubMed - indexed for MEDLINE]

1471. Epidemiologic study of Parkinson's disease in Hong Kong.
Ho SC, Woo J, Lee CM.
PMID: 2797455 [PubMed - indexed for MEDLINE]
Related citations

1472. Gardening and young onset Parkinson disease.
Martinelli P, Gabellini AS, Martinelli A, Contin M.
No abstract available.
PMID: 2793422 [PubMed - indexed for MEDLINE]

Related citations

1473. Interactions of manganese with human brain glutathione-S-transferase.
Vescovi A, Gebbia M, Cappelletti G, Parati EA, Santagostino A.
Toxicology. 1989 Jul 17;57(2):183-91.
PMID: 2787543 [PubMed - indexed for MEDLINE]

Related citations

1474. [Evaluation of the capability of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and pyridine derivatives to evoke parkinsonism].
Lermontiva NN, Soliakov LS, Bachurin SO, Tkachenko SE, Serkova TP.
PMID: 2790166 [PubMed - indexed for MEDLINE]

Related citations

1475. Parkinson disease in farm workers.
Stefano E, Casali C, Caporali M, Sancesario G, Morocutti C.
No abstract available.
PMID: 2767946 [PubMed - indexed for MEDLINE]

Related citations

1476. Intracerebral microdialysis neurotoxicity studies of quinoline and isoquinoline derivatives related to MPTP/MPP+.
PMID: 2788253 [PubMed - indexed for MEDLINE]

Related citations

1477. J-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine inhibits proton motive force in energized liver mitochondria.
Singh Y, Bhatnagar R, Sidhu GS, Batra JK, Krishna G.
PMID: 2540715 [PubMed - indexed for MEDLINE]

Related citations

1478. MPP+-induced pathophysiology demonstrates advantages of neurotoxicology studies in brain slices.
Hollinden GE, Sanchez-Ramos JR, Sick TJ, Rosenthal M.
PMID: 2786117 [PubMed - indexed for MEDLINE]

Related citations

1479. Enhancement by tetraphenylboron of the interaction of the 1-methyl-4-phenylpyridinium ion (MPP+) with mitochondria.
Ramsay RR, Mehlhorn RJ, Singer TP.
PMID: 2784681 [PubMed - indexed for MEDLINE]

Related citations

1480. [Clinico-electroencephalographic indices of the parkinsonian syndrome induced by MPP+ in rats].
Kryzhanovski? GN, Atadzhanov MA,
Voronina TA, Nerobkova LN, Zagorevski VA.
PMID: 2784332 [PubMed - indexed for MEDLINE]
Related citations

1481. [Lipid peroxidation in the caudate nuclei in experimental parkinsonian syndrome].
Kucherianu VG, Atadzhanov MA, Nikushkin EV, Zagorevskiĭ VA, Sharkova LM.
PMID: 2783652 [PubMed - indexed for MEDLINE]
Related citations

1482. A sheep model for MPTP induced Parkinson-like symptoms.
PMID: 2586222 [PubMed - indexed for MEDLINE]
Related citations

1483. MPP+-induced increases in extracellular potassium ion activity in rat striatal slices suggest that consequences of MPP+ neurotoxicity are spread beyond dopaminergic terminals.
Hollinden GE, Sanchez-Ramos JR, Sick TJ, Rosenthal M.
PMID: 3265070 [PubMed - indexed for MEDLINE]
Related citations

1484. Characteristics of the transport of the quaternary ammonium 1-methyl-4-phenylpyridinium by chromaffin granules.
Darchen F, Scherman D, Desnos C, Henry JP.
PMID: 3264161 [PubMed - indexed for MEDLINE]

1485. [No Parkinsonian syndrome following acute paraquat poisoning].
Zilker T, Fogt F, von Clarhamn M.
PMID: 2907065 [PubMed - indexed for MEDLINE]

1486. Susceptibility in Parkinson's disease. 'Of mice and men'.
Borm PJ, Van Vliet C.
PMID: 3211016 [PubMed - indexed for MEDLINE]

Lindquist NG, Larsson BS, Lydén-Sokolowski A.
PMID: 3264893 [PubMed - indexed for MEDLINE]

1488. Experimental hemiparkinsonism in the rat following chronic unilateral infusion of MPP+ into the nigrostriatal dopamine pathway--II. Differential localization of dopamine and cholecystokinin receptors.
Beresford IJ, Davenport AP, Sirinathsinghi DJ, Hall MD, Hill RG, Hughes J.
1489. Experimental hemiparkinsonism in the rat following chronic unilateral infusion of MPP+ into the nigrostriatal dopamine pathway--I. Behavioural, neurochemical and histological characterization of the lesion.
Sirinathsinghji DJ, Heavens RP, Richards SJ, Beresford IJ, Hall MD.
PMID: 3264391 [PubMed - indexed for MEDLINE]
Related citations

1490. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease.
Hirsch E, Graybiel AM, Agid YA.
PMID: 2899295 [PubMed - indexed for MEDLINE]
Related citations

1491. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine metabolism and 1-methyl-4-phenylpyridinium uptake in dissociated cell cultures from the embryonic mesencephalon.
Schinelli S, Zuddas A, Kopin IJ, Barker JL, di Porzio U.
PMID: 3259619 [PubMed - indexed for MEDLINE]
Related citations

1492. Chronic exposure to the fungicide maneb may produce symptoms and signs of CNS manganese intoxication.
Ferraz HB, Bertolucci PH, Pereira JS, Lima JG, Andrade LA.
PMID: 3352909 [PubMed - indexed for MEDLINE]
Mechanism of the neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+), the toxic bioactivation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

Singer TP, Ramsay RR, McKeown K, Trevor A, Castagnoli NE Jr.
Toxicology. 1988 Apr;49(1):17-23.
Review.
PMID: 3287690 [PubMed - indexed for MEDLINE]

Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), cyperquat (MPP+) and paraquat on isolated mitochondria from rat striatum, cortex and liver.

Thakar JH, Hassan MN.
PMID: 3260653 [PubMed - indexed for MEDLINE]

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), its metabolite cyperquat (MPP+) and energy transduction in mitochondria from rat striatum and liver.

Thakar JH, Hassan MN, Grimes JD.
PMID: 3260387 [PubMed - indexed for MEDLINE]

Intracerebroventricular administration of 1-methyl-4-phenylpyridinium ion in mice: effects of simultaneously administered nomifensine, deprenyl, and 1-t-butyl-4,4-diphenylpiperidine.

Mihatsch W, Russ H, Przuntek H.
PMID: 3128644 [PubMed - indexed for MEDLINE]

Related citations

1497. Paraquat and Parkinson's disease.
Rajput AH, Uitti RJ.
No abstract available.
PMID: 3670622 [PubMed - indexed for MEDLINE]

Related citations

1498. MPTP: an industrial chemical and contaminant of illicit narcotics stimulates a new era in research on Parkinson's disease.
Kopin IJ.
Environ Health Perspect. 1987 Nov;75:45-51. Review.

Related citations

1499. Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson's disease.
Rajput AH, Uitti RJ, Stern W, Laverty W, O'Donnell K, O'Donnell D, Yuen WK, Dua A.
PMID: 3676917 [PubMed - indexed for MEDLINE]

Related citations

1500. Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
Singer TP, Castagnoli N Jr, Ramsay RR, Trevor AJ.
PMID: 3495634 [PubMed - indexed for MEDLINE]

1503. Chemically induced Parkinson's disease: intermediates in the oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenylpyridinium ion. Chacon JN, Chedekel MR, Land EJ, Truscott TG. Biochem Biophys Res Commun. 1987 Apr 29;144(2):957-64. PMID: 3495270 [PubMed indexed for MEDLINE]

1505. General Referee reports: Committee on Pesticide Formulations and
Disinfectants.
[No authors listed]
PMID: 3571121 [PubMed - indexed for MEDLINE]
Related citations

1506. 4-Phenylpyridine (4PP) and MPTP: the relationship between striatal MPP+ concentrations and neurotoxicity.
Irwin I, Langston JW, DeLanney LE.
PMID: 3492652 [PubMed - indexed for MEDLINE]
Related citations

1507. Parkinsonism and industrial chemicals.
Chapman LJ, Peters HA, Matthews CG, Levine RL.
PMID: 2880148 [PubMed - indexed for MEDLINE]
Related citations

1508. Ecogenetics of Parkinson's disease: prevalence and environmental aspects in rural areas.
PMID: 3815163 [PubMed - indexed for MEDLINE]
Related citations

1509. Parkinson's disease and pesticides.
Hart TB.
PMID: 2879110 [PubMed - indexed for MEDLINE]
Related citations
1510. **Toxins and Parkinson's disease: MPTP parkinsonism in humans and animals.**
Kopin IJ.
Adv Neurol. 1987;45:137-44. No abstract available.
PMID: 3493621 [PubMed - indexed for MEDLINE]
Related citations

1511. **Inhibition of the tyrosine hydroxylase system by MPTP, 1-methyl-4-phenylpyridinium ion (MPP+) and the structurally related compounds in vitro and in vivo.**
Nagatsu T, Hirata Y.
Eur Neurol. 1987;26 Suppl 1:11-5.
PMID: 2884110 [PubMed - indexed for MEDLINE]
Related citations

1512. **Parkinson's disease and pesticides.**
Bocchetta A, Corsini GU.
PMID: 2877313 [PubMed - indexed for MEDLINE]
Related citations

1513. **The effects of pyridinium salts, structurally related compounds of 1-methyl-4-phenylpyridinium ion (MPP+), on tyrosine hydroxylation in rat striatal tissue slices.**
Hirata Y, Sugimura H, Takei H, Nagatsu T.
PMID: 3099974 [PubMed - indexed for MEDLINE]
Related citations

1514. **The pharmacology of the parkinsonian syndrome producing neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and structurally related compounds.**
Markey SP, Schmuff NR.
PMID: 3534484 [PubMed - indexed for MEDLINE]
Related citations

1515. Paraquat and two endogenous analogues of the neurotoxic substance N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine do not damage dopaminergic nigrostriatal neurons in the mouse.
Perry TL, Yong VW, Wall RA, Jones K.
PMID: 3489912 [PubMed - indexed for MEDLINE]
Related citations

1516. [Neurobiologic and pharmacologic studies on the pathogenesis of Parkinson disease].
Brücke T, Riederer P.
PMID: 2878540 [PubMed - indexed for MEDLINE]
Related citations

1517. Paraquat and Parkinson's disease.
Koller WC.
PMID: 3736891 [PubMed - indexed for MEDLINE]
Related citations

1518. Organophosphate poisoning in office workers.
Hodgson MJ, Block GD, Parkinson DK.
PMID: 2425064 [PubMed - indexed for MEDLINE]
Related citations

1519. Histochemistry of MPTP oxidation in
the rat brain: sites of synthesis of the parkinsonism-inducing toxin MPP+.
Nakamura S, Vincent SR.
PMID: 3487052 [PubMed - indexed for MEDLINE]
Related citations

1520. MPTP causes a non-reversible depression of synaptic transmission in mouse neostriatal brain slice.
Wilson JA, Wilson JS, Weight FF.
Brain Res. 1986 Mar 19;368(2):357-60.
PMID: 3008929 [PubMed - indexed for MEDLINE]
Related citations

1521. N-methyl-4-phenylpyridine (MMP+) together with 6-hydroxydopamine or dopamine stimulates Ca2+ release from mitochondria.
Frei B, Richter C.
PMID: 3082673 [PubMed - indexed for MEDLINE]
Related citations

1522. Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin.
D'Amato RJ, Lipman ZP, Snyder SH.
PMID: 3080808 [PubMed - indexed for MEDLINE]
Related citations

1523. Inhibition of mitochondrial NADH dehydrogenase by pyridine derivatives and its possible relation to experimental and idiopathic parkinsonism.
Ramsay RR, Salach JI, Dadgar J, Singer TP.
Biochem Biophys Res Commun. 1986 Feb 26;135(1):269-75.
1524. Potential neurotoxicity of NaBH₄ reduced paraquat.
Worobey BL.
No abstract available.
PMID: 3485217 [PubMed - indexed for MEDLINE]
Related citations

1525. Neuropharmacological manipulations with MPTP.
Barnes NJ, Bradbury AJ, Costall B, Domeney AM, Kelly ME, Naylor RJ.
PMID: 3091761 [PubMed - indexed for MEDLINE]
Related citations

1526. L-dopa reverses the effects of MPP+ toxicity.
Wagner GC, Jarvis MF, Rubin JG.
PMID: 3083462 [PubMed - indexed for MEDLINE]
Related citations

1527. 1-Methyl-4-phenyl-pyridinium-induced inhibition of nicotinamide adenosine dinucleotide cytochrome c reductase.
Poirier J, Barbeau A.
PMID: 3877888 [PubMed - indexed for MEDLINE]
Related citations

1528. Clinical trial for Parkinson's disease?
Lewin R.
No abstract available.
PMID: 3931220 [PubMed - indexed for MEDLINE]
1529. **Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP+ and paraquat in Rana pipiens.**
Barbeau A, Dallaire L, Buu NT, Poirier J, Rucinska E.
PMID: 3876500 [PubMed - indexed for MEDLINE]

1530. **The neurotoxic actions of 1-methyl-4-phenylpyridine (MPP+) are not prevented by deprenyl treatment.**
Bradbury AJ, Costall B, Jenner PG, Kelly ME, Marsden CD, Naylor RJ.
PMID: 2413398 [PubMed - indexed for MEDLINE]

1531. **Parkinson's disease: an environmental cause?**
Lewin R.
No abstract available.
PMID: 3925554 [PubMed - indexed for MEDLINE]

1532. **New amphibian models for the study of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).**
Barbeau A, Dallaire L, Buu NT, Veilleux F, Boyer H, de Lanney LE, Irwin I, Langston EB, Langston JW.
PMID: 3871891 [PubMed - indexed for MEDLINE]

1533. **Significance of chemically noxious agents in the etiology of Parkinson**
syndrome].
Glass J.
Z Arztl Fortbild (Jena).
PMID: 4049941 [PubMed - indexed for MEDLINE]
Related citations

1534. The importance of the '4-5' double bond for neurotoxicity in primates of the pyridine derivative MPTP.
Langston JW, Irwin I, Langston EB, Forno LS.
PMID: 6333656 [PubMed - indexed for MEDLINE]
Related citations

1535. 1-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra.
Langston JW, Irwin I, Langston EB, Forno LS.
PMID: 6332288 [PubMed - indexed for MEDLINE]
Related citations

1536. MPTP-induced parkinsonism in human and non-human primates--clinical and experimental aspects.
Langston JW, Langston EB, Irwin I.
Acta Neurol Scand Suppl. 1984;100:49-54.
PMID: 6333134 [PubMed - indexed for MEDLINE]
Related citations

1537. [Residues of plant protection products and agents for controlling biological processes in drugs of the pharmacopoeia of the GDR, edition 2. 1. General aspects
of packaging of plant protection products and agents for controlling biological processes in botanical drugs in the GDR.
PMID: 751064 [PubMed - indexed for MEDLINE]
Related citations

1538. Clinical toxicosis induced by pesticides in livestock.
PMID: 250338 [PubMed - indexed for MEDLINE]
Related citations

1539. Neurologic manifestations in the course of pesticide intoxication.
PMID: 683438 [PubMed - indexed for MEDLINE]
Related citations

1540. Single case study. Possible organophosphate-induced parkinsonism.
PMID: 641541 [PubMed - indexed for MEDLINE]
Related citations

1541. A compendium of inorganic substances used in European pest control before 1850.
Smith AE, Secoy DM. J Agric Food Chem. 1976 Nov-
Dec;24(6):1180-6. No abstract available.
PMID: 794086 [PubMed - indexed for MEDLINE]

Related citations

1542. Mortality in 1969 from pesticides, including aerosols.
Hayes WJ.
PMID: 1259472 [PubMed - indexed for MEDLINE]

Related citations

1543. [The problem of toxicologic proof and consideration of environmental chemicals].
Lange G.
PMID: 4794779 [PubMed - indexed for MEDLINE]

Related citations

1544. Pesticide legislation in New Zealand.
Thompson FB.
PMID: 4604895 [PubMed - indexed for MEDLINE]

Related citations

1545. Diphenidol for levodopa induced nausea and vomiting.
Duvoisin RC.
JAMA. 1972 Sep 18;221(12):1408. No abstract available.
PMID: 5068561 [PubMed - indexed for MEDLINE]

Related citations

1546. [Round table discussion: topics on neuromuscular disease].
Satoyashi E, Narabayashi H, Tsubaki T,
PMID: 5097717 [PubMed - indexed for MEDLINE]
Related citations

1547. [Therapy of nervous system intoxications].
Greif S.
PMID: 4400240 [PubMed - indexed for MEDLINE]
Related citations
National Water-Quality Assessment Program

Scientific Investigation Report 2013–5009
Cover. Photographs on front cover from istockphoto.com.
Estimation of Annual Agricultural
Pesticide Use for Counties of the
Conterminous United States, 1992–2009

By Gail P. Thelin and Wesley W. Stone

National Water-Quality Assessment Program

U.S. Department of the Interior
U.S. Geological Survey
U.S. Department of the Interior
KEN SALAZAR, Secretary

U.S. Geological Survey
Suzette M. Kimball, Acting Director

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:
FOREWORD

The U.S. Geological Survey (USGS) is committed to providing the Nation with reliable scientific information that helps to enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral resources (http://www.usgs.gov/). Information on the Nation’s water resources is critical to ensuring long-term availability of water that is safe for drinking and recreation and is suitable for industry, irrigation, and fish and wildlife. Population growth and increasing demands for water make the availability of that water, measured in terms of quantity and quality, even more essential to the long-term sustainability of our communities and ecosystems.

The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support national, regional, State, and local information needs and decisions related to water-quality management and policy (http://water.usgs.gov/nawqa). The NAWQA Program is designed to answer: What is the quality of our Nation’s streams and groundwater? How are conditions changing over time? How do natural features and human activities affect the quality of streams and groundwater, and where are those effects most pronounced? By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerging water issues and priorities. From 1991 to 2001, the NAWQA Program completed interdisciplinary assessments and established a baseline understanding of water-quality conditions in 51 of the Nation’s river basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawqa/studies/study_units.html).

National and regional assessments are ongoing in the second decade (2001–2012) of the NAWQA Program as 42 of the 51 Study Units are selectively reassessed. These assessments extend the findings in the Study Units by determining water-quality status and trends at sites that have been consistently monitored for more than a decade, and filling critical gaps in characterizing the quality of surface water and groundwater. For example, increased emphasis has been placed on assessing the quality of source water and finished water associated with many of the Nation’s largest community water systems. During the second decade, NAWQA is addressing five national priority topics that build an understanding of how natural features and human activities affect water quality, and establish links between sources of contaminants, the transport of those contaminants through the hydrologic system, and the potential effects of contaminants on humans and aquatic ecosystems. Included are studies on the fate of agricultural chemicals, effects of urbanization on stream ecosystems, bioaccumulation of mercury in stream ecosystems, effects of nutrient enrichment on aquatic ecosystems, and transport of contaminants to public-supply wells. In addition, national syntheses of information on pesticides, volatile organic compounds (VOCs), nutrients, trace elements, and aquatic ecology are continuing.

The USGS aims to disseminate credible, timely, and relevant science information to address practical and effective water-resource management and strategies that protect and restore water quality. We hope this NAWQA publication will provide you with insights and information to meet your needs, and will foster increased citizen awareness and involvement in the protection and restoration of our Nation’s waters.

The USGS recognizes that a national assessment by a single program cannot address all water-resource issues of interest. External coordination at all levels is critical for cost-effective management, regulation, and conservation of our Nation’s water resources. The NAWQA Program, therefore, depends on advice and information from other agencies—Federal, State, regional, interstate, Tribal, and local—as well as nongovernmental organizations, industry, academia, and other stakeholder groups. Your assistance and suggestions are greatly appreciated.

William H. Werkheiser
USGS Associate Director for Water
Contents

Abstract ...1
Introduction..1
Purpose and Scope ..3

Data Sources ..3

Pesticide-Use Data ..3
Harvested-Crop Acreage ..5
Geospatial Data ...5
Pesticide-Use Estimates for California ...7

Methods for Estimating Pesticide Use ..8
Processing Zero Values ...9
EPest Crop-Use Rates for Surveyed CRDs ..9
EPest Use Rates for Unsurveyed CRDs—Tier 1, Tier 2, and Regional Use Rates ...9

Results ...12

Comparison of EPest National Estimates with Other Sources ...13
Comparisons of EPest and NASS State Estimates ...15
Comparison of State Total-Use Estimates ..15
Comparison of State Estimates for Individual Pesticide-by-Crop Combinations17

Herbicide Estimate Comparisons between EPest and NASS ..26

Alachlor ..27
Atrazine ...29
Bentazon ..29
Butylate32
Fluometuron ..32
Glyphosate ..32
Corn ..32
Cotton ...36
Metolachlor ..36
Corn ..36
Soybeans ...36
Metrizubin ..40
Nicosulfuron ...40
S-Metolachlor ..40
Trifluralin ..44
Cotton ...44
Soybeans ...44

Insecticide Estimate Comparisons between EPest and NASS ...47
Methomyl ..47
Methyl Parathion ...47

Fungicide Estimate Comparisons between EPest and NASS—Propiconazole ...50
Summary of Comparisons ..52
Applications of EPest Use Data ...52
Contents—Continued

Summary and Conclusions... 53
References Cited.. 54
Appendix 1. Summary of Epest-Low and Epest-High Annual National Totals by Pesticide and Crop Type.. 54
Appendix 2. Epest-Low and Epest-High Annual National Totals Derived from Epest Surveyed, Tier 1, Tier 2, and Regional Rate Estimates ... 54

Figures

1. Graph showing trends in agricultural conventional pesticide use in the conterminous United States, 1992–2009 ... 2
2. Map showing Crop Reporting Districts of the conterminous United States .. 4
3. Map showing Crop Reporting District 20060 (Kansas CRD 60) and neighboring tier 1 and tier 2 Crop Reporting Districts ... 7
4. Map showing U.S. Department of Agriculture Farm Resources Regions as subdivided for calculating regional estimated pesticide-use rates ... 8
5. Flowchart showing summary of decision process followed to develop E Pest rates 10
6. Map showing methods for establishing extrapolated estimates for 2007 S-metolachlor use on corn in the Southern Seaboard-East region for E Pest tier 1, tier 2, and regional rates 11
7. Graphs showing comparison of E Pest-low and E Pest-high national total use of selected pesticides with national use estimates from other sources .. 14
8. Boxplots showing distributions of relative error between E Pest and National Agricultural Statistics Service use estimates ... 16
9. Boxplots showing distribution of relative error between E Pest-low and National Agricultural Statistics Service use estimates .. 18
10. Boxplots showing distribution of relative error between E Pest-high and National Agricultural Statistics Service use estimates .. 19
11. Map showing U.S. Department of Agriculture Farm Production Regions ... 27
12. Graphs showing comparison of E Pest and National Agricultural Statistics Service state estimates of alachlor use on corn .. 28
13. Graph showing comparison of E Pest and National Agricultural Statistics Service state estimates of atrazine use on corn .. 30
14. Graphs showing comparison of E Pest and National Agricultural Statistics Service state estimates of bentazon use on corn .. 31
15. Graphs showing comparison of E Pest and National Agricultural Statistics Service state estimates of butylate use on corn .. 33
16. Graphs showing comparison of E Pest and National Agricultural Statistics Service state estimates of flumeturon use on cotton .. 34
17. Graphs showing comparison of E Pest and National Agricultural Statistics Service state estimates of glyphosate use on corn .. 35
18. Graphs showing comparison of E Pest and National Agricultural Statistics Service state estimates of glyphosate use on cotton .. 37
19. Graphs showing comparison of E Pest and National Agricultural Statistics Service state estimates of metolachlor use on corn .. 38
Figures—Continued

20. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of metolachlor use on soybeans ... 39
21. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of metribuzin use on soybeans ... 41
22. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of nicosulfuron use on corn ... 42
23. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of S-metolachlor use on corn ... 43
24. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of trifluralin use on cotton ... 45
25. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of trifluralin use on soybeans ... 46
26. Graph showing comparison of EPest and National Agricultural Statistics Service state estimates of methomyl use on cotton ... 48
27. Graph showing comparison of EPest and National Agricultural Statistics Service state estimates of methyl parathion use on cotton ... 49
28. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of propiconazole use on winter wheat ... 51

Tables

1. List of pesticide names and type, for which annual county pesticide-use estimates were calculated .. 3
2. EPest crop name and corresponding U.S. Department of Agriculture Census of Agriculture crop names .. 6
Conversion Factors

Inch/Pound to SI

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>acre</td>
<td>4,047</td>
<td>square meter (m²)</td>
</tr>
<tr>
<td>acre</td>
<td>0.4047</td>
<td>hectare (ha)</td>
</tr>
<tr>
<td>acre</td>
<td>0.4047</td>
<td>square hectometer (hm²)</td>
</tr>
<tr>
<td>acre</td>
<td>0.004047</td>
<td>square kilometer (km²)</td>
</tr>
<tr>
<td>square mile (mi²)</td>
<td>259.0</td>
<td>hectare (ha)</td>
</tr>
<tr>
<td>square mile (mi²)</td>
<td>2.590</td>
<td>square kilometer (km²)</td>
</tr>
</tbody>
</table>

Mass

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>pound, avoirdupois (lb)</td>
<td>0.4536</td>
<td>kilogram (kg)</td>
</tr>
</tbody>
</table>

SI to Inch/Pound

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>square kilometer (km²)</td>
<td>247.1</td>
<td>acre</td>
</tr>
<tr>
<td>square kilometer (km²)</td>
<td>0.3861</td>
<td>square mile (mi²)</td>
</tr>
</tbody>
</table>

Abbreviations

ACU Agricultural Chemical Use
CDL Cropland Data Layer
CRD Crop Reporting District
DPR California Department of Pesticide Regulation
DPR-PUR Department of Pesticide Regulation-Pesticide Use Reporting (California)
EPest Estimated pesticide use
FR Fruitful Rim
GIS Geographic Information System
NASS National Agricultural Statistics Service
NAWQA National Water Quality Assessment Program
NPUD National Pesticide Use Data
PUR Pesticide Use Reporting
RE Relative error calculated as: (EPest–NASS)/NASS
USDA U.S. Department of Agriculture
USEPA U.S. Environmental Protection Agency
USGS U.S. Geological Survey
WARP Watershed Regressions for Pesticides
Abstract

A method was developed to calculate annual county-level pesticide use for selected herbicides, insecticides, and fungicides applied to agricultural crops grown in the conterminous United States from 1992 through 2009. Pesticide-use data compiled by proprietary surveys of farm operations located within Crop Reporting Districts were used in conjunction with annual harvested-crop acreage reported by the U.S. Department of Agriculture National Agricultural Statistics Service (NASS) to calculate use rates per harvested-crop acre, or an 'estimated pesticide use' (EPest) rate, for each crop by year. Pesticide-use data were not available for all Crop Reporting Districts and years. When data were unavailable for a Crop Reporting District in a particular year, EPest extrapolated rates were calculated from adjoining or nearby Crop Reporting Districts to ensure that pesticide use was estimated for all counties that reported harvested-crop acreage. EPest rates were applied to county harvested-crop acreage differently to obtain EPest-low and EPest-high estimates of pesticide-use for counties and states, with the exception of use estimates for California, which were taken from annual Department of Pesticide Regulation Pesticide Use Reports.

Annual EPest-low and EPest-high use totals were compared with other published pesticide-use reports for selected pesticides, crops, and years. EPest-low and EPest-high national totals for five of seven herbicides were in close agreement with U.S. Environmental Protection Agency and National Pesticide Use Data estimates, but greater than most NASS national totals. A second set of analyses compared EPest and NASS annual state totals and state-by-crop totals for selected crops. Overall, EPest and NASS use totals were not significantly different for the majority of crop-state-year combinations evaluated. Furthermore, comparisons of EPest and NASS use estimates for most pesticides had rank correlation coefficients greater than 0.75 and median relative errors of less than 15 percent. Of the 48 pesticide-by-crop combinations with 10 or more state-year combinations, 12 of the EPest-low and 17 of the EPest-high totals showed significant differences (p < 0.05) from NASS use estimates. The differences between EPest and NASS estimates did not follow consistent patterns related to particular crops, years, or states, and most correlation coefficients were greater than 0.75.

EPest values from this study are suitable for making national, regional, and watershed assessments of annual pesticide use from 1992 to 2009. Although estimates are provided by county to facilitate estimation of watershed pesticide use for a wide variety of watersheds, there is a greater degree of uncertainty in individual county-level estimates when compared to Crop Reporting District or state-level estimates because (1) EPest crop-use rates were developed on the basis of pesticide use on harvested acres in multi-county areas (Crop Reporting Districts) and then allocated to county harvested cropland; (2) pesticide-by-crop use rates were not available for all Crop Reporting Districts in the conterminous United States, and extrapolation methods were used to estimate pesticide use for some counties; and (3) it is possible that surveyed pesticide-by-crop use rates do not reflect all agricultural use on all crops grown. The methods developed in this study also are applicable to other agricultural pesticides and years.

Introduction

Hundreds of millions of pounds of pesticides are applied to agricultural crops every year to control weeds, insect infestations, plant diseases, and other pests. Annually, the total amount of conventional pesticides (excluding sulfur, petroleum oil, chlorine, hypochlorites, and wood preservatives) applied to crops grown throughout the conterminous United States has increased from a low of about 698 million pounds in the early 1990s (http://www.epa.gov/app00001/pestsales/07pestsales/historical_data2007_3.htm#table5_6, accessed November 16, 2011) to a high of over 800 million pounds in 1996 (fig. 1). From 1996 through 2007, there was a slight downward trend in the total amount of pesticides used, reflecting decreases in the use of herbicides, plant growth regulators, and other conventional pesticides. Most of these differences in pesticide use can be attributed to changes in crop-management practices, the development of new pesticides that are effective at reduced use rates, and the introduction of genetically modified crops (Young, 2006; Fernandez-Cornejo and McBride, 2000).
Pesticides are important to crop management because they contribute to increased crop yields and improve the quality of crops. Pesticides applied to crops and soil, however, can be transported to surface water and groundwater, where they can degrade water quality. Pesticide concentrations in streams vary widely across the United States and are influenced by many factors, such as the amount and timing of pesticide applications and the soils, climate, and hydrology where they are applied (Gilliom and others, 2006). Nationally consistent information on the amount and geographic distribution of pesticide use, both current and historic, is essential for designing water-quality studies, interpreting water-quality data, assessing trends in pesticide use, and developing water-quality models that relate pesticide use to concentrations in the hydrologic environment.

Agricultural pesticide-use information is available from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS), but these data are reported as state totals for varying regions, crops, and years and, consequently, do not have sufficient geographic coverage, resolution, or temporal consistency to support studies at watershed or multicounty scales. California's Department of Pesticide Regulation (DPR) collects detailed pesticide-use information from all licensed applicators in the State and publishes annual Pesticide Use Reports (DPR-PURs) that include detailed pesticide-use information (California Department of Pesticide Regulation, 2010). Agricultural pesticide-use data also are available from proprietary sources, but extrapolation techniques, such as those described in this report, are needed so that these data can be used by the National Water Quality Assessment (NAWQA) Program to estimate pesticide use for all counties of the conterminous United States.

A previous U.S. Geological Survey (USGS) study focused on developing extrapolation methods to determine county-level estimates for the herbicide atrazine by using proprietary pesticide-use reports and county harvested-crop acreage (Thelin and Stone, 2010). As part of that approach, regional rates were developed by using data from multiple years, and atrazine estimates were calculated for most counties in the conterminous United States. Comparisons with other data sources indicated that this approach to regional extrapolation could over-estimate pesticide use for pesticides that are not widely used across all geographic regions or when pesticide-use practices changed. This report describes an approach to estimating pesticide use, referred to as EPest, that is based on previous efforts but has changes that limit the use of regional rates, that incorporate a refined version of crop growing regions, and that expand the method to 39 herbicides, insecticides, and fungicides used in agriculture (table 1).

Figure 1. Trends in agricultural conventional pesticide use in the conterminous United States, 1992–2009.
The purpose of this report is to describe (1) a method to estimate annual pesticide-by-crop use rates (pounds applied per harvested-crop acre), referred to as EPest rates, for 39 pesticides; (2) the process that was followed to apply these rates to produce an EPest-low and EPest-high estimate of annual use for each county; and (3) how the estimates for selected pesticides and crops derived by these methods compare with estimates from other published sources. This method was developed by using pesticide-use estimates reported for Crop Reporting Districts (CRDs) to calculate annual pesticide-by-crop use rates and, from that, estimates of pesticide use for individual counties. The 39 selected pesticides represent some of the primary pesticides used throughout the nation on row crops and several orchard and vegetable crops, and include 28 herbicides, 9 insecticides, and 2 fungicides. Most of these same pesticides were included in a Watershed Regressions for Pesticides (WARP) multi-compound model analysis (Charles Crawford, U.S. Geological Survey, oral commun., 2011).

The pesticides evaluated in this study represent a range of herbicides, insecticides, and fungicides that are used on a variety of row, fruit, nut, and specialty crops grown in different environmental settings. Several of these pesticides have had changes in use over time, providing an evaluation of method performance for a wide range of conditions. To assess the accuracy of EPest totals, state-level totals were compared with NASS use estimates for selected pesticides and crops for states and years for which NASS survey data were available.

Data Sources

Data sources used to develop EPest pesticide-by-crop use rates and annual pesticide-use estimates by county included the following: (1) proprietary pesticide-by-crop use estimates reported for CRDs; (2) USDA county harvested-crop acreage reported in the 1992, 1997, 2002, and 2007 Census of Agriculture [http://www.agcensus.usda.gov/]), and NASS annual harvested-crop acreage data collected from crop surveys for non-census years [http://quickstats.nass.usda.gov/]; (3) boundaries for CRDs and counties; (4) regional boundaries derived from USDA Farm Resource Regions; and (5) pesticide-use information from California DPR-PUR. Each of these sources is described in following sections.

Pesticide-Use Data

Proprietary data from GfK Kynetec, Inc. on the amounts of pesticides applied to individual crops by CRD are the primary source of information used in this study and are referred to as surveyed use data in the remainder of this report. The surveyed use data are based on agricultural pesticide use surveys of more than 20,000 farm operations distributed throughout the conterminous United States (AgroTrak Quality Management Plan, written commun., August 2011). Data from the Census of Agriculture on the size (in acres) and number of farms that grow individual crops and represent selected land uses, such as pasture, are used to stratify all farms in the United States by size and to allocate the number of farms that will be surveyed in each strata. The survey design allocates a greater proportion of the sample to larger farm operations so that a greater percentage of crop acreage is represented, with the goal of more accurate characterization of farm operations and pesticide-use patterns. Use estimates for over 400 pesticides that are applied to a variety of row, specialty, fruit, and nut crops are reported by multi-county areas, referred to as CRDs (fig. 2). Surveys of farm operations within each CRD are extrapolated to represent total pesticide use for that CRD, and then estimates for individual CRDs or groups of CRDs are expanded to estimate pesticide use for states.

Table 1

<table>
<thead>
<tr>
<th>Pesticide name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Benomyl</td>
<td>Fungicide</td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Insecticide</td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Cyanazine</td>
<td>Herbicide</td>
</tr>
<tr>
<td>EPTC</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Ethalfluralin</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Ethoprophos</td>
<td>Insecticide</td>
</tr>
<tr>
<td>Fluometuron</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Fonofos</td>
<td>Insecticide</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Linuron</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide</td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Insecticide</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
</tr>
<tr>
<td>S-metolachlor</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Norflurazon</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Oryzalin</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Insecticide</td>
</tr>
<tr>
<td>Pebulate</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Phorate</td>
<td>Insecticide</td>
</tr>
<tr>
<td>Propachlor</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Propargite</td>
<td>Insecticide</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Fungicide</td>
</tr>
<tr>
<td>Propyzamide</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Terbacil</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Terbufos</td>
<td>Insecticide</td>
</tr>
<tr>
<td>Thiobencarb</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Triallate</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Herbicide</td>
</tr>
</tbody>
</table>
Figure 2. Crop Reporting Districts of the conterminous United States.
Harvested-Crop Acreage

The surveyed use data are based on planted-crop acres within a CRD, but NAWQA requires pesticide-use estimates at the county scale, including use estimates for pesticides that potentially were not surveyed. Therefore, the surveyed use data had to be disaggregated from CRDs to the individual counties. The USDA is the only uniform source of annual crop-acreage estimates for all counties in the United States. The USDA reports data on planted and harvested-crop acreage, but planted-acreage data are not available from the USDA for all of the individual crops with surveyed use data. Therefore, harvested acreage, rather than planted acreage, was used to develop annual pesticide-by-crop use rates. In taking this approach, it is recognized that use-rate estimates could be numerically greater than actual use rates on planted crops because not all planted acres are harvested. The emphasis of the method was to develop the best possible estimates of total use in a county, which required the use of the comprehensive data on harvested cropland. Annual harvested-crop acreage by county data from the USDA Census of Agriculture and NASS crop surveys were used in method development (1) to calculate the pesticide-by-crop use rates for each crop and CRD surveyed, and (2) to estimate pesticide use for all counties that report harvested acreage in the conterminous United States. Harvested-crop acreage was obtained from the Census of Agriculture for 1992, 1997, 2002, and 2007, and from NASS annual surveys for the years between censuses. Table 2 lists the crops for which EPest use rates were developed and the USDA crop names for which acreage data were retrieved from the Census of Agriculture and NASS.

County-level harvested-crop acreage for the 76 crops and other non-crop agricultural-land uses, such as pasture and woodland, were obtained from USDA reports and used to produce harvested-crop acreage totals for all CRDs. However, additional processing was required in three cases: (1) the USDA did not report county acreage for a crop and year because of census nondisclosure rules that protect the identity of individual farm operations, (2) the USDA-NASS annual surveys did not collect data for a particular state or crop, or (3) the crop acreage was the total acreage for multiple categories of that crop. In cases when county acreage was not reported because of USDA nondisclosure rules or when a crop and state had not been surveyed by NASS, the county crop acreage was estimated through linear interpolation of acreage reports for the crop and county from consecutive years before and after the year of missing crop acreage. In order to produce acreage totals for EPest crop names that were composed of more than one USDA crop name, the subcategories for that crop were summed to produce total harvested acreage. For example, the county total for sorghum acreage was calculated by summing the acreage for the subcategories of sorghum: sorghum for grain, sorghum for silage, and sorghum for syrup. Crop-acreage totals that comprised more than one crop name typically required crop acreage to be estimated through linear interpolation for some of the crop names because NASS crop surveys do not report all the same crop names as the Census of Agriculture. For example, NASS did not report acreage of corn for forage from 1992 through 2009. To estimate corn-for-forage acreage in non-census years, the acreage from two Censuses of Agriculture (prior and next) was interpolated to fill in the non-surveyed corn-for-forage acreage.

Geospatial Data

Two geospatial datasets were integral to the method used to calculate pesticide-by-crop use rates for surveyed and non-surveyed CRDs. These datasets included boundaries for CRDs and USDA Farm Resource Regions (http://www.ers.usda.gov/Briefing/ARMS/resourceregions/resourceregions.htm). CRD boundaries were used (1) to develop a table that listed the spatial relation of each CRD in the conterminous United States to its surrounding CRDs and (2) to determine the counties that were associated with each CRD so that estimates reported for CRDs could be disaggregated to counties. The second geospatial dataset was a modified version of the USDA Farm Resource Boundaries, which was used (1) to determine the Farm Resource Region for each CRD and (2) to develop regional use rates for individual crops when a CRD rate did not exist.

CRDs are defined as multi-county areas that share similar geographic attributes, including soil type, terrain, elevation, and climatic factors, such as mean temperature, annual precipitation, and length of growing season. There are 304 CRDs in the conterminous United States, and most states are divided into 9 CRDs; however, some states, such as Massachusetts and New Hampshire, contain only 1 CRD, whereas Texas has 15 CRDs.

A geospatial vector dataset of CRD boundaries was used to generate a table that enumerates the spatial relation between each of the individual CRDs and the CRDs surrounding each of these ‘primary’ CRDs. For each primary CRD, two concentric rings of CRDs were identified by using a Geographic Information System (GIS) proximity mapping function. CRDs that touched the primary CRD were designated as tier 1 CRDs, and CRDs that touched tier 1 CRDs were designated as tier 2 CRDs. Any CRD could be considered a primary, a tier 1, or a tier 2 CRD, depending on which CRD is central to the area of interest. Figure 3, for example, shows primary CRD 20060 (Kansas CRD 60) and the tier 1 and tier 2 CRDs that are associated with it. When CRD-level pesticide use data were not available, associated tier 1 and tier 2 CRDs were used to calculate pesticide-by-crop rates.
Table 2. EPest crop name and corresponding U.S. Department of Agriculture (USDA) Census of Agriculture crop names.

<table>
<thead>
<tr>
<th>EPest crop name</th>
<th>USDA, Census of Agriculture crop name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>Alfalfa hay</td>
</tr>
<tr>
<td>Almonds</td>
<td>Almonds</td>
</tr>
<tr>
<td>Apples</td>
<td>Apples</td>
</tr>
<tr>
<td>Barley</td>
<td>Barley for grain</td>
</tr>
<tr>
<td>Beans and peas</td>
<td>Green lima beans; snap beans; green peas, excluding southern peas; peas, green southern</td>
</tr>
<tr>
<td>Berries</td>
<td>Strawberries</td>
</tr>
<tr>
<td>Bulb crops</td>
<td>Garlic; green onions; dry onions</td>
</tr>
<tr>
<td>Conservation Reserve Program (CRP), long-term acres</td>
<td>Land enrolled in conservation reserve or wetlands reserve programs</td>
</tr>
<tr>
<td>Canola, rapeseed</td>
<td>Canola, other rapeseed</td>
</tr>
<tr>
<td>Cherries</td>
<td>Sweet cherries; tart cherries</td>
</tr>
<tr>
<td>Citrus, other</td>
<td>Other citrus fruit</td>
</tr>
<tr>
<td>Cole crops</td>
<td>Broccoli</td>
</tr>
<tr>
<td>Corn</td>
<td>Corn for grain</td>
</tr>
<tr>
<td>Cotton</td>
<td>Cotton, all</td>
</tr>
<tr>
<td>Cropland for pasture</td>
<td>Cropland used for pasture or grazing</td>
</tr>
<tr>
<td>Cucurbits</td>
<td>Cucumbers and pickles; pumpkins; squash</td>
</tr>
<tr>
<td>Dry beans and peas</td>
<td>Dry lima beans; dry edible beans, excluding limas; dry edible peas; dry southern peas</td>
</tr>
<tr>
<td>Eggplant and peppers</td>
<td>Eggplant; peppers, bell; peppers, chile</td>
</tr>
<tr>
<td>Summer fallow</td>
<td>Summer fallow</td>
</tr>
<tr>
<td>Flax</td>
<td>Flaxseed</td>
</tr>
<tr>
<td>Grapefruit</td>
<td>Grapefruit</td>
</tr>
<tr>
<td>Grapes</td>
<td>Grapes</td>
</tr>
<tr>
<td>Hay, other</td>
<td>Grass silage, haylage</td>
</tr>
<tr>
<td>Idle cropland, other</td>
<td>Idle cropland, other</td>
</tr>
<tr>
<td>Leafy vegetables, other</td>
<td>Celery; spinach</td>
</tr>
<tr>
<td>Lemons</td>
<td>Lemons</td>
</tr>
<tr>
<td>Lettuce</td>
<td>Lettuce all</td>
</tr>
<tr>
<td>Lots, farmsteads, other</td>
<td>Lots, farmsteads and other</td>
</tr>
<tr>
<td>Melons</td>
<td>Cantaloupes; watermelons</td>
</tr>
<tr>
<td>Nut trees, other</td>
<td>Hazel nuts (filberts); pistachios</td>
</tr>
<tr>
<td>Oats and rye</td>
<td>Oats for grain; rye for grain</td>
</tr>
<tr>
<td>Oranges</td>
<td>Oranges, all</td>
</tr>
<tr>
<td>Pasture/range</td>
<td>Pastureland and rangeland, other than cropland and woodland pastured</td>
</tr>
<tr>
<td>Peaches</td>
<td>Peaches, all</td>
</tr>
<tr>
<td>Peanuts</td>
<td>Peanuts for nuts</td>
</tr>
<tr>
<td>Pears</td>
<td>Pears, all</td>
</tr>
<tr>
<td>Pecans</td>
<td>Pecans</td>
</tr>
<tr>
<td>Potatoes</td>
<td>Potatoes</td>
</tr>
<tr>
<td>Prunes</td>
<td>Plums and prunes</td>
</tr>
<tr>
<td>Rice</td>
<td>Rice</td>
</tr>
<tr>
<td>Roots and tubers</td>
<td>Carrots</td>
</tr>
<tr>
<td>Sorghum</td>
<td>Sorghum for grain; sorghum for sileage or green chop; sorghum for syrup</td>
</tr>
<tr>
<td>Soybeans</td>
<td>Soybeans for beans</td>
</tr>
<tr>
<td>Stone-like fruit, other</td>
<td>Apricots; avocados</td>
</tr>
<tr>
<td>Sugarbeets</td>
<td>Sugar beets for sugar</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>Sugar cane for sugar</td>
</tr>
<tr>
<td>Sunflowers</td>
<td>Sunflower seed all</td>
</tr>
<tr>
<td>Sweet corn</td>
<td>Sweet corn</td>
</tr>
<tr>
<td>Tobacco</td>
<td>Tobacco</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>Tomatoes</td>
</tr>
<tr>
<td>Other vegetables</td>
<td>Artichokes</td>
</tr>
<tr>
<td>Walnuts</td>
<td>Walnuts, english</td>
</tr>
<tr>
<td>Wheat, spring</td>
<td>Durum wheat for grain; other spring wheat for grain</td>
</tr>
<tr>
<td>Wheat, winter</td>
<td>Winter wheat for grain</td>
</tr>
<tr>
<td>Woodland</td>
<td>Total woodland</td>
</tr>
</tbody>
</table>
A geospatial dataset of USDA Farm Resource Regions was used to develop regional pesticide-by-crop use rates for CRDs that were not surveyed and for which a tier 1 or tier 2 rate was not available. In a previous atrazine study (Thelin and Stone, 2010), USDA Farm Production Regions were used to develop regional rates. These boundaries follow state boundaries and often combine large areas that can have different soils, topography, and agricultural practices. The Farm Production Region boundaries were replaced with USDA Farm Resource Regions because these boundaries take into account farm practices and physiographic, soil, and climatic traits (http://www.ers.usda.gov/publications/aib760/aib-760.pdf). Farm Resource Region boundaries conform to CRD boundaries. There are nine Farm Resource Regions, which were further subdivided in cases where the region was not contiguous. For example, the Fruitful Rim (FR) Region is located in parts of the West, Southwest, and Southeastern United States, so this large region was subdivided into four subregions: (1) FR-Northwest, including Washington and parts of Oregon and Idaho; (2) FR-West, including parts of California and Arizona; (3) FR-Texas, including Texas and New Mexico; and (4) FR-Southeast, including Florida and parts of Alabama, Georgia, and South Carolina. Similarly, the Eastern Uplands, Northern Crescent, and Southern Seaboard were divided into eastern and western subregions (fig. 4).

Pesticide-Use Estimates for California

EPest-low and EPest-high estimates for California were not calculated by using the method described in this report; instead, county totals were obtained from the online DPR-PUR database (California Department of Pesticide Regulation, 2010). Since 1990, California has required reporting of all agricultural pesticide use. DPR-PUR includes information on the pesticide applied, location and time of application, and the agricultural crop treated. Annual pesticide-use estimates by crop were retrieved from the online DPR-PUR database and merged with the EPest-low and EPest-high county data after the estimation process was completed for the rest of the country.
Methods for Estimating Pesticide Use

The following sections describe methods developed to estimate agricultural pesticide use for counties in the conterminous United States, except those in California. In order to calculate estimates of pesticide use for counties, pesticide-by-crop use rates were developed for CRDs on the basis of surveyed use data and harvested-crop acreage from the USDA. The resulting pesticide-by-crop use rates are referred to as EPest surveyed-use rates, which are calculated by dividing the amount of pesticide applied to a crop in the CRD by harvested-crop acres. Not every CRD in the conterminous United States was surveyed; therefore, EPest extrapolated rates were developed for unsurveyed CRDs by using surveyed rates from nearby CRDs or surveyed and extrapolated rates from CRDs in the same region. A surveyed or an extrapolated rate, depending on the CRD, was applied to county harvested acreage to estimate pesticide use on individual crops grown in each county of the conterminous United States, except California. The following sections describe (1) the method used to replace false zero values reported in the surveyed use data with inferred data, (2) how the EPest surveyed and extrapolated rates were developed, and (3) the decision process that was followed to assign these EPest rates to counties to produce EPest-high and EPest-low estimates of pesticide use for counties in the conterminous United States.

Figure 4. U.S. Department of Agriculture Farm Resources Regions (http://www.ers.usda.gov/publications/aib760/aib-760.pdf), as subdivided for calculating regional estimated pesticide-use rates.
Processing Zero Values

The surveyed-use data included the following elements: pounds of pesticide applied to a crop, number of crop acres treated, and overall pesticide-by-crop application rate. In some cases, a zero value was reported for one or more of the data elements because of rounding or truncating values of less than one; therefore, a new inferred value was calculated to replace the false zero values as follows:

1. When the pounds applied were reported as zero, but the number of acres treated was greater than zero, and an application rate was reported, then a value for the pounds applied was calculated by multiplying the number of acres treated by the pesticide-by-crop application rate reported for the surveyed CRD.

2. When the number of acres treated and the pounds applied were reported as zero for the surveyed CRD, but an application rate was reported, then it was assumed that the number of acres treated was equal to one, and the pounds applied were equal to the application rate for 1 acre as reported for the CRD.

3. When the pounds applied and application rate were reported as zero for the surveyed CRD, but the number of acres treated was greater than zero, a new application rate could not be calculated. In these cases, the lowest non-zero application rate in the surveyed-use data across all years, pesticides, crops, and CRDs, which was 0.001 pounds per acre annually, was used to estimate the pounds applied (0.001 pounds per acre multiplied by the number of acres treated).

EPest Crop-Use Rates for Surveyed CRDs

EPest surveyed-use rates for 1992 through 2009 were developed for each of the 39 pesticides included in this study by using surveyed-use estimates of pounds of pesticides applied to individual crops and the harvested acreage for these crops reported by USDA. The pesticide-by-crop use rates determined from surveyed-use data for CRDs are based on planted-crop acreage, but were adjusted to harvested acreage for EPest county-level pesticide-by-crop use rates. EPest surveyed pesticide-by-crop use rates were calculated by dividing the pounds of pesticide applied to a crop in a CRD by the harvested-crop acreage in the CRD to yield a use rate per harvested acre—for a specific crop this is referred to as an EPest surveyed pesticide-by-crop use rate. Use rates calculated by using harvested-crop acreage rather than planted acreage can result in a greater rate per acre because, typically, there are fewer harvested acres than planted acres as a result of crop failure. To avoid artificially high use rates caused solely by the difference between planted and harvested acres, the harvested-crop acreage for the CRD and associated counties was adjusted if the CRD harvested-crop acres were less than the surveyed CRD planted-crop acres. Specifically, a county-CRD weighting factor for each crop and year was calculated by determining the percentage that each county’s acreage contributed to the total acreage in the CRD. When the sum of the harvested-crop acreage for counties in the CRD was less than the planted-crop acreage for the CRD reported in the surveyed-use data, the weighting factor was used to adjust the harvested acreage for each county in the CRD to the survey-reported planted-crop acreage.

EPest Use Rates for Unsurveyed CRDs—Tier 1, Tier 2, and Regional Use Rates

EPest surveyed-use rates were applied to the harvested-crop acreage in all counties that were part of the surveyed CRDs. Some CRDs, however, were not surveyed for a particular year or combination of years, even though a pesticide could have been used there. For these CRDs, indirect estimates were derived. To ensure that pesticide-use estimates accounted for all acreage that could have been treated, extrapolated use rates were developed for individual pesticides and crops in unsurveyed CRDs through a set of decision rules (fig. 5). The decision process included developing three types of extrapolated pesticide-by-crop use rates, referred to as tier 1, tier 2, and regional rates. How a use rate was estimated for an unsurveyed CRD depended on the availability of rates from surrounding tier 1 and tier 2 CRDs. For this purpose, the proximity table of CRDs, described previously, was searched to determine if a new rate could be calculated on the basis of rates from tier 1 or tier 2 CRDs. First, the tier 1 CRDs surrounding the unsurveyed CRD were searched, and if one or more surveyed pesticide-by-crop use rates existed, the median rate was used from these surveyed rates, called tier 1 EPest rate, to estimate pesticide-by-crop use for the counties in the unsurveyed CRD. If a tier 1 rate could not be established because there were no surveyed rates available, then tier 2 CRDs were searched to determine if three or more of the tier 2 CRDs had surveyed rates. If so, then the median value of these rates was used as the tier 2 EPest rate which was then applied to the counties in the unsurveyed CRD. Finally, if a tier 1 or tier 2 EPest rate could not be determined, then a regional rate was calculated for the modified USDA Farm Resource Region (described previously) and used for the CRD. Regional rates were the median of all non-zero EPest rates, including surveyed, tier 1, and tier 2 EPest from the same modified USDA Farm Resource Region. To reduce the influence of duplicate extrapolated EPest rates on the calculation of regional rates, duplicate extrapolated rates were removed prior to the calculation. Figure 6 illustrates the process of establishing and assigning EPest extrapolated rates for counties in the Southern Seaboard Region-East by using S-metolachlor on corn as an example.
The Southern Seaboard-East region is composed of 36 CRDs from all or part of 8 states, including Alabama, Delaware, Georgia, Maryland, Mississippi, North Carolina, South Carolina, and Virginia (fig. 6). In 2007, there were surveyed-use data for S-metolachlor on corn in 17 of the 36 CRDs in the region. On the basis of the surveyed rates for the 17 surveyed CRDs, S-metolachlor use on corn was estimated for 180 of 388 counties in the region. There were an additional 208 counties in the region that had corn acreage, but a surveyed rate was not available, so EPest tier 1, tier 2, or regional rates were estimated as described in the following paragraphs.

Tier 1 S-metolachlor-corn rates were estimated for 11 CRDs in the example region and applied to 114 counties in these CRDs. South Carolina CRD 45030, labeled A in figure 6, is used to illustrate how a tier 1 rate is calculated from adjacent tier 1 CRDs. The tier 1 rate was developed for South Carolina CRD 45030 by using surveyed rates from three surrounding CRDs, which had EPest surveyed rates of 0.0095, 0.7093, and 1.123 pounds per harvested acre. There were two other CRDs adjacent to South Carolina 45030, but there were no surveyed rates available for them. In this example, the median of the three available EPest surveyed rates was 0.7093 pounds per harvested acre (North Carolina CRD 37090), and this rate was used as the tier 1 rate to estimate 2007 S-metolachlor use on corn in the nine counties that are part of South Carolina CRD 45030.

Figure 5. Summary of decision process followed to develop EPest rates.
Figure 6. Methods for establishing extrapolated estimates for 2007 S-metolachlor use on corn in the Southern Seaboard-East region for (A) EPest tier 1 rate, (B) EPest tier 2 rate, and (C) EPest regional rate.
In the Southern Seaboard-East region, tier 2 S-metolachlor rates for corn were applied to 25 counties in two CRDs. Georgia CRD 13030, labeled B in figure 6, is an example of determining a tier 2 rate from surrounding CRDs. There were no EPEst surveyed rates for S-metolachlor-corn from adjacent CRDs, so tier 2 CRDs were used. A minimum of three rates are required to determine a tier 2 rate, and there were five tier 2 CRDs that had surveyed annual rates of 0.1445, 0.3156, 0.7009, 0.9565, and 1.1229 pounds per harvested acre. The median of these five rates was 0.7009 pounds per harvested acre, which was assigned as the tier 2 rate used to estimate 2007 S-metolachlor use on corn for the nine counties in Georgia CRD 13030.

Finally, regional rates were calculated for 2007 S-metolachlor-corn in the Southern Seaboard-East region and applied to 6 CRDs and 69 counties. Mississippi CRD 28009, labeled C in figure 6, is used to illustrate how the regional rate was calculated from adjacent surveyed, tier 1, and tier 2 CRDs. There were 30 EPEst rates available for the region, including 17 surveyed rates, 11 tier 1 rates, and 2 tier 2 rates. In the calculation of a regional rate, a minimum of three surveyed, tier 1, or tier 2 rates are required, and any duplicate extrapolated rates are dropped prior to calculating the median. In calculating the median regional rate, 7 duplicate rates were dropped, including 6 tier 1 rates and 1 tier 2 rate, so that 17 surveyed rates, 5 tier 1 rates, and 1 tier 2 rate were used to find the 2007 median rate of 0.3069 pounds per harvested acre of corn.

EPEst-Low and EPEst-High Estimates

Two variations on the method for estimating county pesticide use were developed to yield EPEst-low and EPEst-high estimates for counties in the conterminous United States other than California. Both methods incorporated surveyed and extrapolated rates to estimate pesticide use for counties, but EPEst-low and EPEst-high estimations differed in how they treated situations when a CRD was surveyed and pesticide use was not reported for a particular pesticide-by-crop combination (fig. 5). If use of a pesticide on a crop was not reported in a surveyed CRD, EPEst-low reports zero use in the CRD for that pesticide-by-crop combination. EPEst-high, however, treats the unreported use for that pesticide-by-crop combination in the CRD as unsurveyed, and pesticide-by-crop use rates from neighboring CRDs and, in some cases, CRDs within the same USDA Farm Resource Region are used to calculate the pesticide-by-crop EPEst-high rate for the CRD.

Results

EPEst-low and EPEst-high totals were calculated from 1992 through 2009 for the 39 selected pesticides by using the methods described in this report. EPEst-low totals, including California, were available for a low of 3,021 counties in 2008 to a high of 3,056 counties in 1992. The EPEst-high method produced estimates for 3,049 counties in 2000 and 3,060 counties in 1994, including those in California. Pesticide-use estimates for counties in California are available from 1992 through 2009 for 35 of the 39 pesticides in this study. Use estimates are not available for the pesticides acetochlor, chlorimuron, propachlor, and terbufos because these pesticides were not used in California. For counties in California, there is a single county estimate, rather than a high and low estimate per pesticide by crop and year, which represents the sum of individual pesticide applications in a county reported by DPR-PUR (ftp://pestreg.cdpr.ca.gov/pub/outgoing/pur_archives).

EPEst-low and EPEst-high county pesticide-use totals for 1992–2009 are available from http://water.usgs.gov/nawqa/psnp/usage/maps/. The county estimates represent the sum of individual pesticides used on all row, fruit, nut, and vegetable crops and selected agricultural land uses, such as summer fallow, pasture, and woodland. Appendix 1 provides the annual EPEst-low and EPEst-high national totals for each of the 39 pesticides, the total pounds applied to individual crops, and the percentage of the national pesticide total each crop represents. With the exception of acetochlor, fonofos, propachlor, and S-metolachlor, annual estimates are available for 1992 through 2009. Acetochlor estimates are available beginning in 1994, when it was first registered for use, while estimates for fonofos and propachlor are reported for 1992 through 2005, and S-metolachlor estimates are available beginning in 1997.

EPEst-low and EPEst-high national use totals for each of the 39 pesticides are shown in appendix 2 along with the amount and percentage of the total estimate that was derived from EPEst surveyed, tier 1, tier 2, and regional rates, and from the DPR-PUR for California. Across all pesticides and years, the amount added to the EPEst-low national total by extrapolated tier 1, tier 2, or regional rates, ranged from less than 1 percent for most compounds for one or more years to as much as 36 percent for terbacil use in 2003. A greater proportion of the EPEst-high national total was derived from extrapolated rates, which ranged from less than 1 percent to as much as 94 percent for butylate use in 2007.
About 23 percent of the E Pest-low and E Pest-high annual national use totals were within 10 percent of one another and about 45 percent were within 25 percent of one another. E Pest-high totals were more than double E Pest-low totals for the pesticides alachlor, butylate, carbofuran, cyanazine, ethoprophos, linuron, methyl parathion, metolachlor, pendimethalin, propachlor, and terbucarb for at least six of the years estimated. The extrapolated rates for surveyed CRDs used in E Pest-high methods more than doubled the national total pesticide use for some years and pesticides for some specialty crops; for major crops, such as corn and alfalfa; and for some land uses, such as summer fallow, pasture and rangeland.

For the pesticides included in this study, E Pest-low annual-use totals were less than or equal to E Pest-high annual-use totals, as shown in appendix 2. However, E Pest-low annual-use totals can be greater than E Pest-high totals when the E Pest-low pesticide-by-crop regional rate is greater than the E Pest-high rate. E Pest regional pesticide-by-crop rates are determined by using a minimum of three CRDs, and, typically, E Pest-high regional rates were determined from a greater number of CRDs than E Pest-low regional rates. In some cases, rates from additional CRDs can result in an E Pest-high regional pesticide-by-crop rate that is less than the E Pest-low regional rate. For example, if the E Pest-low regional rate were determined from five rates—158, 54, 31.8, 9.68, and 5 pounds per acre—then the median would be 31.8 pounds of pesticide per harvested acre. The rates from these same five CRDs along with the E Pest-high rates from any other CRDs in the region would be used to calculate the E Pest-high regional rate. For example, if 158, 54, 31.8, 9.68, 9.05, 6.7, and 5 pounds of pesticide per crop acre were the rates used to determine the E Pest-high regional rate, the E Pest-high pesticide-by-crop regional rate would be 9.68 pounds of pesticide per harvested acre. Although these two rates were for the same counties in the region, the E Pest-low total would be greater than the E Pest-high use total.

In cases when a CRD was not surveyed, and a tier 1, tier 2, or regional rate was available, both E Pest-low and E Pest-high methods determined a pesticide-by-crop rate. In general, extrapolated rates for non-surveyed CRDs represented a greater percentage of use in more recent years because some pesticides were reported less frequently and some crops were not surveyed as extensively. E Pest tier 1, tier 2, and regional rates have inherently greater uncertainty than rates for surveyed CRDs because a pesticide could have been applied to a localized area in response to a pest infestation, while the same crop grown in another part of the same region would not be managed in the same way, which can result in misrepresentative estimates of pesticide use. In addition, some E Pest-high annual totals for pesticides that have been replaced or phased out, such as metolachlor and cyanazine, can be inaccurate because the E Pest-high method assumes if a CRD was surveyed and an estimate for the pesticide was not reported, then an extrapolated rate could be used to estimate pesticide use.

Comparison of E Pest National Estimates with Other Sources

National annual pesticide-use estimates developed by using E Pest-low and E Pest-high methods were compared with independently published estimates for seven herbicides. These comparisons were limited to acetochlor, alachlor, atrazine, EPTC, glyphosate, propanil, and trifluralin and to selected years because of limited data from the published sources. E Pest totals for 1997, 2001, and 2007 were compared to (1) agricultural-use estimates published by the U.S. Environmental Protection Agency (USEPA; Kiely and others, 2004; Grube and others, 2011), (2) NASS-Agricultural Chemical Use (ACU) data (National Agricultural Statistics Service, 2008; hereinafter, referred to as NASS), and (3) National Pesticide Use Database (NPUD) estimates (Crop Protection Research Institute, 2006). NASS annual data were published as the “Total of Program States” in pounds per year and represent the amount of pesticide estimated for the states and crops that were surveyed for a specific year. Thus, the NASS national totals shown in these analyses are not intended to represent total use for all states or crops but are included as a point of reference. The USEPA estimates were reported as a range for each pesticide on agricultural crops as determined from a variety of public and proprietary data sources. Estimates for some pesticides and years were not available for each set of analyses, so comparisons were made for the years with the most complete data from each of the sources. Annual state estimates for the pesticides compared were available from E Pest for 1992 through 2009; USEPA for 1997, 2001, 2003, 2005, and 2007; NPUD for 1992, 1997, 2002; and NASS for 1997, 2001, and 2006. In addition, NASS use estimates for propanil only were available for 2006. The NPUD estimates used in the 2001 analysis represent use for 2002, and the NPUD estimates were not included in the 2006–07 analysis. Lastly, the 2006–07 analysis did not include the USEPA use estimates for alachlor and EPTC.

Comparisons of E Pest-low and E Pest-high total use estimates with the USEPA, NASS, and NPUD data for 1997, 2001–02, and 2006–07 for the seven herbicides are shown in figures 7A, 7B, and 7C. With the exceptions of the E Pest-low 2001 estimate for alachlor, the 2007 E Pest-low and E Pest-high estimates for propanil, and the 2007 E Pest-high estimates for trifluralin, E Pest and USEPA estimates differed from one another by less than 20 percent. NASS use estimates are not complete national estimates, so they were less than both E Pest-low and E Pest-high totals, and most 2006 NASS use estimates were a fraction of both USEPA and E Pest totals because the number of the crops and states that were surveyed and reported by NASS was reduced in 2006. Overall, the comparisons illustrated in figure 7 indicate a high level of agreement between E Pest totals and both the USEPA and NPUD estimates, although none of these three sources of national estimates is known to be a better estimate of true use than the others.
Figure 7. Comparison of EPest-low and EPest-high national total use of selected pesticides with national use estimates from other sources for (A) 1997 Agricultural-use estimates, (B) 2001–02 Agricultural-use estimates, and (C) 2006–07 Agricultural-use estimates. NASS, National Agricultural Statistics Service; USEPA, U.S. Environmental Protection Agency; EPest, estimated pesticide use; National Pesticide Use Database.
Comparisons of EPest and NASS State Estimates

The national comparisons provide an aggregated assessment of how comparable EPest totals are to other published sources. In order to determine how well EPest use estimates represented regional and state level amounts and patterns of pesticide use, a second set of evaluations were made that compared EPest and NASS estimates for (1) state totals for individual pesticides and (2) state totals for individual pesticide-by-crop combinations. The comparisons between EPest and NASS state and state-by-crop estimates were the most controlled evaluations possible.

Comparison of State Total-Use Estimates

State-level comparisons were made for individual pesticides that have four or more estimates for combinations of states, crops, and years common to both EPest and NASS use estimates. Estimates for 33 pesticides and 34 states were compared for one or more years from 1992 through 2006. The pesticides included 24 herbicides, 8 insecticides, and 1 fungicide. Depending on the state and year, estimated state totals represented the sum of a pesticide used on one or more crops, including barley, corn, cotton, peanuts, rice, sorghum, soybeans, spring wheat, sunflowers, tobacco, and winter wheat. For each comparison, the difference between EPest and NASS use estimates was evaluated as the relative error (RE) for EPest relative to NASS estimates, or \((\text{EPest} - \text{NASS}) / \text{NASS}\), and RE was used to show the distribution of differences in state estimates for each pesticide (fig. 8). In figures 8A (EPest-low) and 8B (EPest-high), positive RE values represent EPest totals that were greater than NASS use estimates and negative RE values represent EPest totals that were less than NASS use estimates. Although differences between EPest and NASS estimates are expressed as proportional errors relative to NASS estimates in order to facilitate clear comparisons to publicly available NASS estimates, neither estimate can be considered a more certain estimate of true values than the other. The number of state-by-year combinations for each pesticide is indicated at the bottom of the plot (fig. 8). For the different pesticides, the number of state-by-year combinations used in the comparisons ranged from as few as 5 to as many as 443.

Of the 33 pesticides evaluated, less than one-third—10 EPest-low and 8 EPest-high—had median RE values significantly different from zero based on the 95-percent confidence interval on the median RE. For EPest-low, 6 of the 10 pesticides that were significantly different from NASS use estimates tended to have lower estimates compared to NASS (acifluorfen, bentazon, butylate, methomyl, methyl parathion, and propachlor), and the rest (atrazine, fluometuron, nicosulfuron, and propargite) tended to be greater than NASS. Compared to NASS use estimates, seven of the eight significantly different EPest-high totals tended toward overestimation (atrazine, fluometuron, fonofos, metribuzin, nicosulfuron, propargite, and trifluralin), and only one pesticide (methyl parathion) tended toward underestimation. The inter-quartile ranges for both sets of estimates generally were symmetrical for most pesticides, and there was a relatively small proportion of outlying individual values—generally fewer than 10 percent. Several pesticides showed wide confidence intervals around the median, and some had only a small number of estimates to compare, including propachlor and thiobencarb, among others.
Figure 8. Distributions of relative error between EPest and National Agricultural Statistics Service (NASS) use estimates. Relative error expressed as (EPest - NASS)/NASS. Estimated state totals represent the sum of use on one or more crops, including barley, corn, cotton, peanuts, rice, sorghum, soybeans, spring wheat, sunflowers, tobacco, and winter wheat. Numbers for each pesticide represent the number of state-by-year combinations compared.
Comparison of State Estimates for Individual Pesticide-by-Crop Combinations

EPest and NASS use estimates for individual states and crops were compared for selected years from 1992 to 2006, which are the most direct comparisons possible with the data available. The comparisons were limited to pesticide-by-crop combinations that had both EPest and NASS use estimates for at least 10 state-year combinations. This requirement allowed one or more crop comparisons for 29 pesticides, including 21 herbicides, 7 insecticides, and 1 fungicide, for one or more of the following crops: corn, cotton, rice, soybeans, spring wheat, and winter wheat. There were 17 pesticides compared for corn, 13 pesticides for cotton, 9 pesticides for soybeans, 4 pesticides for winter wheat, 4 pesticides for spring wheat, and a single pesticide for rice. Although NASS also reported pesticide-use estimates for other crops included in the all-crops state totals, such as sorghum, tobacco, peanuts, and barley, there were too few estimates for each of these crops to include them in the crop-specific comparisons.

The distribution of RE values for all available state-year combinations for each of the 47 pesticide-by-crop combinations are shown by crop (rice excluded) in figures 9A–9E for EPest-low totals and in figures 10A–10E for EPest-high totals. The figures show that the range of RE values for EPest-low totals for most pesticide-by-crop combinations was less than for EPest-high totals and contained fewer outliers, indicating that EPest-low totals tended to approximate NASS estimates more accurately than EPest-high totals.

Similarly, more than two-thirds (33 of 48) of EPest-low pesticide-by-crop combinations had median REs that were 15 percent or less, whereas just over half (26 of 48) of the EPest-high totals had median REs that were less 15 percent or less (tables 3 and 4). Of the 15 EPest-low pesticide-by-crop combinations that had median REs that differed by 15 percent or more, 13 pesticide crop-combinations were less than NASS use estimates and 2 pesticide-by-crop combinations were greater than NASS use estimates (table 3). There were 21 EPest-high pesticide-by-crop combinations that had median REs greater than 15 percent, with 13 combinations greater than NASS use estimates and 8 that were less (table 4). These results were consistent with the aggregated state total comparisons presented previously, and overall, these comparisons indicated a reasonable agreement between EPest and NASS use estimates, with somewhat better agreement for EPest-low than high estimates. Nevertheless, some pesticide-by-crop combinations showed substantial differences in the estimates for specific states and years.

A combination of statistical tests were used to compare EPest and NASS use estimates for the pesticide-by-crop combinations. The Wilcoxon signed rank sum test (Conover, 1980; Lehmann, 1975) was used to further evaluate differences between magnitudes of EPest and NASS annual use estimates for each pesticide-by-crop combination with sufficient state-year combinations. This non-parametric test evaluates whether the median difference between paired estimates is significantly different than zero, where significance was assigned to a probability (p) of less than 0.05 (two-tailed test). Comparisons that are not statistically significant can indicate agreement between estimates or also can indicate variability in the sample too great to establish significant differences. To help assess the degree of correlation between two ranked pairs of estimates, the Spearman rank correlation coefficient (r) was used, where values range from 0 to 1, and 1 indicates perfect agreement between estimates. The p-value from the Wilcoxon test, the Spearman correlation coefficient (r), the median RE, and the number of state/year combinations used in the evaluations of the comparisons to NASS use estimates are shown for each pesticide and crop combination in table 3 for EPest-low and table 4 for EPest-high.

The strongest agreement between estimates is indicated by statistically insignificant p-values, correlation coefficients approaching 1, and a low median and range for RE values. Pesticides evaluated in this study that met these criteria included acetochlor, cyanazine, and terbufos use estimates for corn, as well as chlorimuron and bentazon use estimates for soybeans. Some estimate comparisons had significantly different medians, but still showed strong correlation and a low RE value; examples include estimates for atrazine and metolachlor use for corn and trifluralin use estimates for cotton. Poor agreement between estimates was indicated by large RE values and low correlation coefficients for both significant and insignificant comparisons of medians. A small sample size can reduce the power of the tests, however, and smaller sample sizes were often associated with the lower correlation coefficients among these comparisons, particularly when RE values were greater than 0.15.

More than half of the comparisons of pesticide-by-crop combinations had RE values less than 0.15, and the majority of these comparisons were not significantly different and had correlation coefficients greater than 0.75. Of the 48 pesticide-by-crop combinations with 10 or more state-by-year combinations, 12 of the EPest-low pesticide-by-crop totals and 17 of the EPest-high totals significantly differed (p < 0.05) from the NASS use estimates. Of the comparisons with significant differences, two-thirds or more of the pesticide-by-crop combinations had correlation coefficients greater than 0.75, especially when comparisons had RE values of 0.15 or less. Comparisons that did not have significant differences tended to have lower RE values than comparisons that had significant differences. Nevertheless, about a quarter of all the comparisons had RE values greater than 0.15, but did not have significant differences. All of these had sample numbers less than 40, and most had fewer than 20 samples for comparison. Also, most had correlation coefficients less than 0.75, which demonstrates the importance of having a sample number large enough to achieve a good comparison of estimates.
Figure 9. Distribution of relative error between E Pest-low and National Agricultural Statistics Service (NASS) use estimates for
(A) corn, (B) cotton, (C) soybeans, (D) spring wheat, and (E) winter wheat. Relative error expressed as \(\frac{\text{EPEST} - \text{NASS}}{\text{NASS}} \).
Figure 10. Distribution of relative error between E Pest-high and National Agricultural Statistics Service (NASS) use estimates for (A) corn, (B) cotton, (C) soybeans, (D) spring wheat, and (E) winter wheat. Relative error expressed as (EPEST - NASS)/NASS.

[Abbreviations: N, number of estimates compared; P, probability of significance; >, greater than; <, less than; –, no data]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetochlor Herbicide</td>
<td>98</td>
<td>0.19</td>
<td>0.90</td>
<td>0.10</td>
<td>0.07</td>
<td>0.93</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Acifluorfen Herbicide</td>
<td>–</td>
</tr>
<tr>
<td>Alachlor Herbicide</td>
<td>99</td>
<td>0.13</td>
<td>0.94</td>
<td>0.06</td>
<td>0.08</td>
<td>0.83</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Atrazine Herbicide</td>
<td>146</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.97</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Bentazon Herbicide</td>
<td>17</td>
<td>0.01</td>
<td>0.01</td>
<td>0.99</td>
<td>(0.39)</td>
<td>0.42</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Bromoxynil Herbicide</td>
<td>62</td>
<td>0.29</td>
<td>0.15</td>
<td>0.86</td>
<td>(0.09)</td>
<td>0.85</td>
<td>18</td>
<td>0.12</td>
<td>0.06</td>
<td>0.95</td>
<td>(0.36)</td>
<td>0.71</td>
</tr>
<tr>
<td>Butylate Herbicide</td>
<td>16</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>(0.47)</td>
<td>0.91</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Carbofuran Insecticide</td>
<td>22</td>
<td>0.18</td>
<td>0.09</td>
<td>0.92</td>
<td>(0.22)</td>
<td>0.68</td>
<td>15</td>
<td>0.56</td>
<td>0.74</td>
<td>0.28</td>
<td>(0.07)</td>
<td>0.73</td>
</tr>
<tr>
<td>Chlorimuron Herbicide</td>
<td>–</td>
</tr>
<tr>
<td>Cyanazine Herbicide</td>
<td>76</td>
<td>0.20</td>
<td>0.90</td>
<td>0.10</td>
<td>0.07</td>
<td>0.92</td>
<td>64</td>
<td>0.65</td>
<td>0.32</td>
<td>0.68</td>
<td>(0.11)</td>
<td>0.82</td>
</tr>
<tr>
<td>EPTC Herbicide</td>
<td>27</td>
<td>0.24</td>
<td>0.12</td>
<td>0.88</td>
<td>(0.13)</td>
<td>0.60</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Fluometuron Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>76</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.12</td>
<td>0.93</td>
</tr>
<tr>
<td>Fonofos Insecticide</td>
<td>17</td>
<td>0.85</td>
<td>0.59</td>
<td>0.43</td>
<td>(0.03)</td>
<td>0.72</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Glyphosate Herbicide</td>
<td>121</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.34</td>
<td>0.78</td>
<td>83</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0.93</td>
</tr>
<tr>
<td>Linuron Herbicide</td>
<td>–</td>
</tr>
<tr>
<td>Methomyl Insecticide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>27</td>
<td>0.01</td>
<td>0.00</td>
<td>1.00</td>
<td>(0.61)</td>
<td>0.76</td>
</tr>
<tr>
<td>Methyl parathion Insecticide</td>
<td>11</td>
<td>0.15</td>
<td>0.07</td>
<td>0.94</td>
<td>(0.24)</td>
<td>0.32</td>
<td>50</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>(0.78)</td>
<td>0.47</td>
</tr>
<tr>
<td>Metolachlor Herbicide</td>
<td>130</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>(0.10)</td>
<td>0.87</td>
<td>34</td>
<td>0.30</td>
<td>0.15</td>
<td>0.85</td>
<td>(0.04)</td>
<td>0.58</td>
</tr>
<tr>
<td>Metribuzin Herbicide</td>
<td>–</td>
</tr>
<tr>
<td>Nicosulfuron Herbicide</td>
<td>127</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.14</td>
<td>0.84</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Norflurazon Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>44</td>
<td>0.48</td>
<td>0.24</td>
<td>0.76</td>
<td>(0.06)</td>
<td>0.78</td>
</tr>
<tr>
<td>Oxamyl Insecticide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>55</td>
<td>0.47</td>
<td>0.23</td>
<td>0.77</td>
<td>0.02</td>
<td>0.68</td>
</tr>
<tr>
<td>Phorate Insecticide</td>
<td>14</td>
<td>0.86</td>
<td>0.60</td>
<td>0.43</td>
<td>0.03</td>
<td>0.50</td>
<td>45</td>
<td>0.62</td>
<td>0.31</td>
<td>0.69</td>
<td>(0.12)</td>
<td>0.80</td>
</tr>
<tr>
<td>Propanil Herbicide</td>
<td>–</td>
</tr>
<tr>
<td>Propiconazole Fungicide</td>
<td>–</td>
</tr>
<tr>
<td>S-Metolachlor Herbicide</td>
<td>39</td>
<td>0.06</td>
<td>0.97</td>
<td>0.03</td>
<td>0.08</td>
<td>0.90</td>
<td>13</td>
<td>0.41</td>
<td>0.21</td>
<td>0.81</td>
<td>(0.21)</td>
<td>0.37</td>
</tr>
<tr>
<td>Terbufos Insecticide</td>
<td>76</td>
<td>0.29</td>
<td>0.15</td>
<td>0.86</td>
<td>(0.05)</td>
<td>0.83</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Triallate Herbicide</td>
<td>–</td>
</tr>
<tr>
<td>Trifluralin Herbicide</td>
<td>90</td>
<td>0.08</td>
<td>0.96</td>
<td>0.04</td>
<td>0.06</td>
<td>0.96</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pesticide</td>
<td>Type</td>
<td>Soybeans</td>
<td>Spring wheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>----------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Insecticide</td>
<td></td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Cyanazine</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>EPTC</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Fluometuron</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Fonofos</td>
<td>Insecticide</td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Linuron</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide</td>
<td></td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Insecticide</td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Norflurazon</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Insecticide</td>
<td></td>
</tr>
<tr>
<td>Phorate</td>
<td>Insecticide</td>
<td></td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Fungicide</td>
<td></td>
</tr>
<tr>
<td>S-Metolachlor</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Terbufos</td>
<td>Insecticide</td>
<td></td>
</tr>
<tr>
<td>Triallate</td>
<td>Herbicide</td>
<td></td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Herbicide</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Summary of statistics from comparison of EPest-low and National Agricultural Statistics Service (NASS) pesticide-by-crop estimates.—Continued

Abbreviations: N, number of estimates compared; P, probability of significance; >, greater than; <, less than; –, no data.
Table 3. Summary of statistics from comparison of EPest-low and National Agricultural Statistics Service (NASS) pesticide-by-crop estimates.—Continued

[Abbreviations: N, number of estimates compared; P, probability of significance; >, greater than; <, less than; –, no data]

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Type</th>
<th>N</th>
<th>Wilcoxon signed rank, P (two-tailed)</th>
<th>Wilcoxon signed rank, P (NASS >EPest)</th>
<th>Wilcoxon signed rank, P (NASS <EPest)</th>
<th>Median relative error</th>
<th>Spearman correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter wheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
<td>29</td>
<td>0.70</td>
<td>0.66</td>
<td>0.34</td>
<td>0.00</td>
<td>0.60</td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanazine</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPTC</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluometuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fonofos</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
<td>38</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>(0.58)</td>
<td>0.58</td>
</tr>
<tr>
<td>Linuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Herbicide</td>
<td>16</td>
<td>0.53</td>
<td>0.26</td>
<td>0.75</td>
<td>(0.41)</td>
<td>0.11</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norflurazon</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phorate</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Fungicide</td>
<td>14</td>
<td>0.91</td>
<td>0.40</td>
<td>0.62</td>
<td>(0.27)</td>
<td>0.78</td>
</tr>
<tr>
<td>S-Metolachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbufos</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triallate</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: N, number of estimates compared; P, probability of significance; <, less than; >, greater than; –, no data

<table>
<thead>
<tr>
<th>Pesticide Type</th>
<th>N</th>
<th>Wilcoxon signed rank, P (two-tailed)</th>
<th>Wilcoxon signed rank, P (NASS > EPest)</th>
<th>Wilcoxon signed rank, P (NASS < EPest)</th>
<th>Median relative error</th>
<th>Spearman correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetochlor</td>
<td>98</td>
<td>0.07</td>
<td>0.96</td>
<td>0.36</td>
<td>0.08</td>
<td>0.93</td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>99</td>
<td>0.01</td>
<td>1.00</td>
<td>0.00</td>
<td>0.13</td>
<td>0.82</td>
</tr>
<tr>
<td>Atrazine</td>
<td>146</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.97</td>
</tr>
<tr>
<td>Bentazon</td>
<td>17</td>
<td>0.04</td>
<td>0.22</td>
<td>0.98</td>
<td>(0.30)</td>
<td>0.34</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>62</td>
<td>0.96</td>
<td>0.53</td>
<td>0.48</td>
<td>(0.03)</td>
<td>0.85</td>
</tr>
<tr>
<td>Butylate</td>
<td>16</td>
<td>0.19</td>
<td>0.10</td>
<td>0.91</td>
<td>(0.16)</td>
<td>0.81</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>22</td>
<td>0.82</td>
<td>0.41</td>
<td>0.60</td>
<td>0.05</td>
<td>0.74</td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cyanine</td>
<td>76</td>
<td>0.09</td>
<td>0.95</td>
<td>0.05</td>
<td>0.08</td>
<td>0.92</td>
</tr>
<tr>
<td>EPTC</td>
<td>27</td>
<td>0.71</td>
<td>0.35</td>
<td>0.65</td>
<td>0.07</td>
<td>0.56</td>
</tr>
<tr>
<td>Fluometuron</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fonofos</td>
<td>17</td>
<td>0.05</td>
<td>0.98</td>
<td>0.03</td>
<td>0.21</td>
<td>0.73</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>121</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.34</td>
<td>0.79</td>
</tr>
<tr>
<td>Limonuron</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methomyl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>130</td>
<td>0.01</td>
<td>1.00</td>
<td>(0.07)</td>
<td>0.88</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>127</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.17</td>
<td>0.84</td>
</tr>
<tr>
<td>Norflurazon</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phorate</td>
<td>14</td>
<td>0.05</td>
<td>0.98</td>
<td>0.02</td>
<td>0.28</td>
<td>0.59</td>
</tr>
<tr>
<td>Propanil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S-Metolachlor</td>
<td>39</td>
<td>0.04</td>
<td>0.98</td>
<td>0.02</td>
<td>0.16</td>
<td>0.91</td>
</tr>
<tr>
<td>Terbufos</td>
<td>76</td>
<td>0.51</td>
<td>0.75</td>
<td>0.25</td>
<td>0.04</td>
<td>0.83</td>
</tr>
<tr>
<td>Triallate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trifluralin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cotton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetochlor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazon</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Butylate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cyanine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EPTC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fluometuron</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fonofos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Limonuron</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methomyl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Norflurazon</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phorate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propanil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S-Metolachlor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbufos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triallate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trifluralin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4. Summary of statistics from comparison of EPest-high and National Agricultural Statistics Service (NASS) pesticide-by-crop estimates.—Continued

[Abbreviations: N, number of estimates compared; P, probability of significance; <, less than; >, greater than; –, no data]

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Type</th>
<th>N</th>
<th>Wilcoxon signed rank, P (two-tailed)</th>
<th>Wilcoxon signed rank, P (NASS > EPest)</th>
<th>Wilcoxon signed rank, P (NASS < EPest)</th>
<th>Median relative error</th>
<th>Spearman correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybeans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
<td>68</td>
<td>0.29</td>
<td>0.15</td>
<td>0.85</td>
<td>(0.01)</td>
<td>0.81</td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
<td>60</td>
<td>0.29</td>
<td>0.86</td>
<td>0.14</td>
<td>0.05</td>
<td>0.70</td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
<td>100</td>
<td>0.58</td>
<td>0.29</td>
<td>0.71</td>
<td>(0.01)</td>
<td>0.89</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Insecticide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
<td>125</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.06</td>
<td>0.82</td>
</tr>
<tr>
<td>Cyanazine</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>EPTC</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Fluometuron</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Fonofos</td>
<td>Insecticide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
<td>148</td>
<td>0.10</td>
<td>0.05</td>
<td>0.95</td>
<td>(0.05)</td>
<td>0.97</td>
</tr>
<tr>
<td>Linuron</td>
<td>Herbicide</td>
<td>17</td>
<td>0.64</td>
<td>0.69</td>
<td>0.32</td>
<td>0.22</td>
<td>0.80</td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Insecticide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
<td>89</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.19</td>
<td>0.75</td>
</tr>
<tr>
<td>Methribuzin</td>
<td>Herbicide</td>
<td>108</td>
<td>0.02</td>
<td>0.99</td>
<td>0.01</td>
<td>0.18</td>
<td>0.80</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Norfluazone</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Insecticide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Phorate</td>
<td>Insecticide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Fungicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>S-Metolachlor</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Terbufos</td>
<td>Insecticide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Triallate</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Herbicide</td>
<td>97</td>
<td>0.04</td>
<td>0.98</td>
<td>0.02</td>
<td>0.07</td>
<td>0.91</td>
</tr>
</tbody>
</table>

<p>| Spring wheat | | | | | | | |
| Pesticide | Type | N | Wilcoxon signed rank, P (two-tailed) | Wilcoxon signed rank, P (NASS > EPest) | Wilcoxon signed rank, P (NASS < EPest) | Median relative error | Spearman correlation coefficient |
| Acetochlor | Herbicide | – | – | – | – | – | – |
| Acifluorfen | Herbicide | 68 | 0.29 | 0.15 | 0.85 | (0.01) | 0.81 |
| Alachlor | Herbicide | 60 | 0.29 | 0.86 | 0.14 | 0.05 | 0.70 |
| Atrazine | Herbicide | – | – | – | – | – | – |
| Bentazon | Herbicide | 100| 0.58 | 0.29 | 0.71 | (0.01) | 0.89 |
| Bromoxynil | Herbicide | – | – | – | – | – | – |
| Butylate | Herbicide | – | – | – | – | – | – |
| Carbofuran | Insecticide| – | – | – | – | – | – |
| Chlorimuron | Herbicide | 125| 0.82 | 0.96 | 0.04 | 0.06 | 0.82 |
| Cyanazine | Herbicide | – | – | – | – | – | – |
| EPTC | Herbicide | – | – | – | – | – | – |
| Fluometuron | Herbicide | – | – | – | – | – | – |
| Fonofos | Insecticide| – | – | – | – | – | – |
| Glyphosate | Herbicide | 148| 0.10 | 0.05 | 0.95 | (0.05) | 0.97 |
| Linuron | Herbicide | 17 | 0.64 | 0.69 | 0.32 | 0.22 | 0.80 |
| Methomyl | Insecticide| – | – | – | – | – | – |
| Methyl parathion | Insecticide| – | – | – | – | – | – |
| Metolachlor | Herbicide | 89 | 0.00 | 1.00 | 0.00 | 0.19 | 0.75 |
| Methribuzin | Herbicide | 108| 0.02 | 0.99 | 0.01 | 0.18 | 0.80 |
| Nicosulfuron | Herbicide | – | – | – | – | – | – |
| Norfluazone | Herbicide | – | – | – | – | – | – |
| Oxamyl | Insecticide| – | – | – | – | – | – |
| Phorate | Insecticide| – | – | – | – | – | – |
| Propanil | Herbicide | – | – | – | – | – | – |
| Propiconazole | Fungicide | – | – | – | – | – | – |
| S-Metolachlor | Herbicide | – | – | – | – | – | – |
| Terbufos | Insecticide| – | – | – | – | – | – |
| Triallate | Herbicide | – | – | – | – | – | – |
| Trifluralin | Herbicide | 97 | 0.04 | 0.98 | 0.02 | 0.07 | 0.91 |</p>
<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Type</th>
<th>N</th>
<th>Wilcoxon signed rank, P (two-tailed)</th>
<th>Wilcoxon signed rank, P (NASS > EPest)</th>
<th>Wilcoxon signed rank, P (NASS < EPest)</th>
<th>Median relative error</th>
<th>Spearman correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter wheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyazine</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPTC</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluometuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fonofos</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norflurazon</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phorate</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Metolachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbufos</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triallate</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyazine</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPTC</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluometuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fonofos</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norflurazon</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phorate</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Metolachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbufos</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triallate</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons of EPest-low tended to show stronger correlation to NASS use estimates than EPest-high and also had a greater number of RE values less than 0.15, which, along with fewer significant differences between medians, indicated that EPest-low totals better approximated NASS use estimates than EPest-high overall. In general, however, the majority of the comparisons of estimates showed agreement, although low sample size limited the power of the tests for some pesticide-by-crop combinations.

Comparisons of EPest-low and EPest-high crop-pesticide combinations with NASS use estimates were further examined to evaluate differences between the estimates. These comparisons provide an understanding of the types and degrees of differences between EPest and NASS estimates and how the statistical tests summarize them.

Herbicide Estimate Comparisons between EPest and NASS

Statistically significant differences in median estimates between the methods are important to understand because they can provide information about similarities and differences in the estimates. One or both EPest medians for 11 of the 21 herbicides were significantly different than NASS median use estimates (tables 3 and 4). For six of these herbicides—atrazine, bentazon, fluometuron, glyphosate, metolachlor, and nicosulfuron—both EPest-low and EPest-high medians differed significantly from NASS median use estimates. In addition, EPest-high (but not EPest-low) medians for alachlor, metribuzin, S-metolachlor, and trifluralin were significantly different from NASS median use estimates, and EPest-low (but not EPest-high) medians for butylate were significantly different from NASS median use estimates. Use estimates for more than one crop were compared for some pesticides, such as metolachlor and bentazon, and both EPest medians (low and high) were significantly different from NASS median use estimates for some but not all of the crops that were compared. For example, EPest-low and EPest-high bentazon medians were significantly different than NASS median use estimates for corn but not soybeans.

Examining the data and statistical results of the pesticide-by-crop comparisons can help to better assess and understand how well the EPest method approximated current NASS pesticide-use estimates. The following sections present the data graphically and discuss the results of the statistical tests for a selection of the pesticide-by-crop combinations that showed significant differences for one or both methods. For all pesticide-by-crop combinations presented, two plots are shown: (1) a scatterplot of EPest-low and NASS state pesticide-use totals for the years compared (only plots of EPest-low estimates were used because they are similar to the EPest-high versions of the scatterplots) and (2) a plot of differences between EPest estimates and NASS state pesticide-use estimates on a common scale, organized by USDA Farm Production Regions. Because their boundaries conform to state boundaries, Farm Production Regions (fig. 11) were selected rather than the USDA Farm Resource Regions that were used to calculate EPest regional rates.
Alachlor

For 19 states and most of the years from 1992 through 2003, 99 E Pest-low and E Pest-high estimates of alachlor use on corn were compared with NASS estimates. Only E Pest-high estimates significantly differed (p <0.05) from NASS use estimates, but both E Pest totals tended to be greater than NASS totals. The medians of the RE distributions comparing E Pest-low and E Pest-high to NASS estimates were 8 and 13 percent greater, respectively, indicating a general tendency for E Pest estimates to be greater than NASS estimates. Correlation coefficients for E Pest-low and NASS comparisons were 0.83 and were 0.82 for E Pest-high. The relation between E Pest-low and NASS estimates for alachlor is shown in figure 12A, and the differences between NASS estimates and both E Pest-low and E Pest-high are shown by region and state in figure 12B.

The majority of E Pest-low and E Pest-high estimates differed from NASS use estimates by less than a factor of two (fig. 12B), and most E Pest and NASS use estimates followed similar trends use for the years compared. Of the approximately 20 percent (20 of 99) of E Pest-high estimates that were more than double the NASS estimate, most were in the Corn Belt and Lake States regions.
Figure 12. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of alachlor use on corn:
(A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates
(\log_{10} EPest – \log_{10} NASS).
Atrazine

For various years from 1992 to 2003, 146 EPest-low and EPest-high estimates of atrazine use on corn were compared with NASS use estimates for 20 states located in the Appalachian, Corn Belt, Lake States, Mountain, Northeast, Northern Plains, Southeast, and Southern Plains regions. Both EPest-low and EPest-high estimates were significantly different than NASS use estimates (p < 0.05). The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were both 7 percent greater, indicating a general tendency for EPest estimates to be slightly greater than NASS estimates. Both EPest-low and EPest-high had correlation coefficients of 0.97 with NASS use estimates, which were among the strongest correlations between pesticide use estimates in this study. The relation between EPest and NASS estimates of atrazine estimates is shown in figure 13A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 13B.

Almost all of the EPest and NASS estimates (142 of 146) differed by less than a factor of two (fig. 13B), but a majority of EPest estimates were slightly greater than NASS estimates. EPest and NASS use estimates were about the same for the Appalachian, Corn Belt, Northeast, and Southeast regions, but greater differences were found for one or more estimates from the Lake States, Mountain, and Northern Plains regions.

Bentazon

For various years from 1992 through 2001, 17 EPest-low and EPest-high estimates of bentazon use on corn estimates were compared with NASS estimates for four states from the Corn Belt and Lake States regions. Both EPest-low and EPest-high estimates significantly differed from NASS use estimates (p <0.05). The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 39 and 30 percent less, respectively, indicating a general tendency for EPest estimates to be less than NASS estimates. The correlation coefficients for the relation between the EPest and NASS estimates were 0.42 for EPest-low and 0.34 for EPest-high. The relation between EPest-low and NASS estimates of bentazon use on corn is shown in figure 14A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 14B.

About one-half (9 of 17) of the EPest-low estimates and 65 percent (11 of 17) of the EPest-high estimates differed by less than a factor of two from NASS estimates. There were large differences between the EPest estimates and NASS use estimates for some states and years, which, in conjunction with a relatively small sample size, likely contributes to the poor correlation between the estimates.
Figure 13. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of atrazine use on corn: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Figure 14. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of bentazon use on corn: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Butylate

Sixteen EPest-low and EPest-high estimates of butylate use on corn estimates were compared with NASS estimates for eight states from the Appalachian, Corn Belt, Northern Plains, and Southeast regions from 1992 through 1994. Only EPest-low estimates significantly differed from NASS use estimates (p < 0.05). The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 47 and 16 percent less, respectively, indicating a general tendency for EPest estimates to be less than NASS estimates. The correlation coefficient for comparison to NASS estimates to EPest-low was 0.91 and was 0.81 for EPest-high. The relation between EPest-low and NASS estimates for butylate use is shown in figure 15A, and the differences between NASS estimates and both EPest-low and EPest-high are shown by region and state in figure 15B.

The majority of EPest estimates (14 of 16 EPest-low and 10 of 16 EPest-high) were less than NASS estimates, but there was a fairly strong correlation between the estimates. Most EPest-low butylate estimates were 15 to 80 percent less than NASS estimates.

Fluometuron

For various years from 1992 through 2005, 76 EPest and NASS estimates of fluometuron use on cotton were compared for 11 states from the Appalachian, Corn Belt, Delta, Mountain, Southeast, and Southern Plains regions. Both EPest-low and EPest-high estimates significantly differed (p <0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 12 and 14 percent greater, respectively, indicating a general tendency for EPest estimates to be slightly greater than NASS estimates. Both EPest-low and EPest-high had correlation coefficients of 0.93 with NASS use estimates. The relation between EPest-low and NASS estimates for fluometuron is shown in figure 16A, and the differences between NASS estimates and both EPest-low and EPest-high rate estimates are shown by region and state in figure 16B.

The majority of the EPest-low (68 of 76) and EPest-high (67 of 76) estimates differed from NASS use estimates by less than a factor of two. EPest estimates tended to be greater than NASS estimates for most of the regions compared, including one or more estimates for states from the Mountain, Southeast, and Southern Plains regions, which were at least twice NASS estimates. EPest totals tended to be less than NASS use estimates for some of the states in the Appalachian, Delta, and Southern Plains, however.

Glyphosate

EPest and NASS estimates of glyphosate use were compared for corn, cotton, soybeans, spring wheat, and winter wheat crops. EPest estimates significantly differed from NASS estimates for the crops evaluated, except for soybeans, which also had the highest correlation coefficient between EPest and NASS estimates and the lowest median RE. Comparisons of EPest and NASS estimates for glyphosate use on spring and winter wheat crops showed low correlation coefficients and small sample sizes, which limits the power of the statistical tests. EPest and NASS estimates of glyphosate use on corn and cotton are discussed in the following sections.

Corn

For glyphosate use on corn, 121 EPest and NASS estimates were compared from 19 states from the Appalachian, Corn Belt, Lake States, Mountain, Northeast, Northern Plains, Southeast, and Southern Plains regions. Both EPest-low and EPest-high estimates significantly differed (p <0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were both 34 percent greater, indicating a general tendency for EPest estimates to be greater than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.78 and were 0.79 for EPest-high. The relation between EPest-low and NASS estimates for glyphosate use on corn is shown in figure 17A, and the differences between NASS estimates and both EPest-low and EPest-high are shown by region and state in figure 17B.

Most of the EPest and NASS estimates (90 or more of 121) differed by less than a factor of two. EPest-low and EPest-high estimates for the Corn Belt, Lake States, Northeast, Southeast, and Southern Plains regions tended to be greater than NASS estimates, and estimates for one or more states in each of these regions had EPest estimates that were more than twice the NASS estimate (fig. 17B).
Figure 15. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of butylate use on corn: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Figure 16. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of fluometuron use on cotton: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Figure 17. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of glyphosate use on corn: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates (log$_{10}$ EPest$-\log_{10}$ NASS).

Cotton

For various years from 1992 through 2005, 83 EPest-low and EPest-high estimates of glyphosate use on cotton were compared with NASS estimates for 12 states from Appalachian, Corn Belt, Delta, Mountain, Pacific, Southeast, and Southern Plains regions. Both EPest-low and EPest-high estimates significantly differed (p <0.05) from NASS use estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were both 30 percent greater, indicating a general tendency for EPest estimates to be greater than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.93 and were 0.92 for EPest-high. The relation between EPest and NASS estimates of glyphosate use on cotton is shown in figure 18A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 18B.

Most EPest and NASS estimates (63 of 83) differed by less than a factor of two. EPest estimates for the Appalachian, Delta and Corn Belt regions bracketed NASS use estimates, whereas in most other regions, EPest estimates were greater than NASS use estimates. One reason for this difference could be that EPest pesticide totals include pesticide use on both upland and Pima cotton, whereas NASS reports pesticide use for upland cotton only.

Metolachlor

Corn

For various years from 1992 through 2003, 130 EPest-low and EPest-high estimates of metolachlor use on corn were compared with NASS estimates for 18 states from the Appalachian, Corn Belt, Lake States, Mountain, Northeast, and Northern Plains regions. Both EPest-low and EPest-high estimates significantly differed (p <0.05) from NASS use estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 10 and 7 percent lower, respectively, indicating a general tendency for EPest estimates to be less than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.76 and were 0.75 for EPest-high. The relation between EPest-low and NASS estimates of metolachlor use on corn is shown in figure 19A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 19B.

Most EPest estimates differed from NASS estimates by less than a factor of two, and estimates for most states bracketed NASS estimates. From 1998 through 2003, however, there were 30 EPest-low and EPest-high estimates that were more than 50 percent lower than NASS estimates, representing some of the greatest underestimates of EPest compared to NASS. Beginning in the late 1990s and early 2000s, metolachlor use was being replaced by use of S-metolachlor. It is possible that this difference in estimates could be related to how metolachlor and S-metolachlor were surveyed and reported. NASS estimates for metolachlor may have also included information for the related compound S-metolachlor. For example, beginning in 2002, EPest-low estimates of metolachlor use were zero for several states, such as Illinois and Iowa, while NASS reported several hundred pounds to over one million pounds of metolachlor use in these same states.

Soybeans

For various years from 1992 through 2000, 89 EPest-low and EPest-high estimates of metolachlor use on soybeans were compared with NASS estimates for 18 states from the Appalachian, Corn Belt, Delta, Lake States, Northeast, and Northern Plains regions. Only EPest-high estimates significantly differed (p <0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 8 and 19 percent greater, respectively, indicating a general tendency for EPest estimates to be greater than NASS estimates. The correlation coefficients for EPest-low and NASS comparisons were 0.76 and were 0.75 for EPest-high. The relation between EPest-low and NASS estimates of metolachlor use on soybeans are shown in figure 20A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 20B.

The majority (71 of 89) of EPest and NASS estimates differed by less than a factor of two (fig. 20B). EPest estimates for most regions tended to be greater than NASS estimates, but in the Appalachian region, they tended to be less than NASS estimates.
Figure 18. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of glyphosate use on cotton: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Figure 19. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of metolachlor use on corn: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} EPest - \log_{10} NASS$).
Figure 20. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of metolachlor use on soybeans: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates (\log_{10} EPest – \log_{10} NASS).

Metribuzin

For various years from 1992 through 2006, 108 EPest-low and Epest-high estimates of metribuzin use on soybeans were compared with NASS estimates in 19 states located in the Appalachian, Corn Belt, Delta, Lake States, Northeast, and Southeast regions. Only EPest-high estimates were significantly different (p < 0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 12 and 18 percent greater, respectively, indicating a general tendency for EPest estimates to be slightly greater than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.81 and were 0.80 for EPest-high. The relation between EPest-low and NASS estimates of metribuzin use is shown in figure 21A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 21B.

The majority of EPest estimates were within a factor of two of NASS estimates (fig. 21B). EPest estimates for all of the regions bracketed NASS estimates, but estimates from Arkansas and Nebraska showed some large differences.

Nicosulfuron

For various years from 1992 through 2003, 127 EPest-low and EPest-high estimates of nicosulfuron use on corn were compared with NASS estimates for 20 states located in Appalachian, Corn Belt, Lake States, Mountain, Northeast, Northern Plains, Southeast, and Southern Plains regions. EPest-low and EPest-high estimates significantly differed (p <0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 14 and 17 percent greater, respectively, indicating a general tendency for EPest estimates to be greater than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.84 for both EPest-low and EPest-high. The relation between EPest-low and NASS estimates of nicosulfuron use on corn is shown in figure 22A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 22B.

Most of the EPest estimates were greater than NASS estimates, and the majority (98 of 127) of comparisons differed by less than a factor of two, although one or more EPest estimates from the Appalachian, Corn Belt, Lake States, Northeast, Northern Plains, and Southern Plains regions were at least twice NASS estimates. For some of the same states in these regions, however, EPest totals were half or less of NASS estimates.

S-Metolachlor

For 17 states from the Appalachian, Corn Belt, Lake States, Mountain, Northeast, Northern, and Southern Plains regions from 2001 through 2003, 39 EPest-low and EPest-high estimates of S-metolachlor use on corn were compared with NASS estimates. Only EPest-high estimates significantly differed (p <0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 8 and 16 percent greater, respectively, indicating a general tendency for EPest estimates to be slightly greater than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.90 and were 0.91 for EPest-high. The relation between EPest and NASS estimates of S-metolachlor use is shown in figure 23A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 23B.

EPest and NASS estimates for the majority (36 of 39) of states and years were within a factor of two (fig. 23B). EPest estimates for the Corn Belt, Mountain, Northern Plains, and Southern Plains regions tended to be greater than NASS estimates, whereas EPest estimates for the Lake States and Northeast tended to be less than NASS estimates.
Figure 21. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of metribuzin use on soybeans: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Figure 22. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of nicosulfuron use on corn: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates (log₁₀ EPest – log₁₀ NASS).
Figure 23. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of S-metolachlor use on corn: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates (\log_{10} EPest – \log_{10} NASS).

Trifluralin

Cotton

For various years from 1992 through 2005, 90 Epest-low and Epest-high estimates of trifluralin use on cotton were compared with NASS estimates for 12 states from the Appalachian, Corn Belt, Mountain, Pacific, Southeast, and Southern Plains regions. Only Epest-high estimates significantly differed (p <0.05) from NASS estimates. The medians of the RE distributions comparing Epest-low and Epest-high to NASS estimates were 6 and 10 percent greater, respectively, indicating a general tendency for Epest estimates to be slightly greater than NASS estimates. Correlation coefficients for Epest and NASS comparisons were 0.95 for both Epest-low and Epest-high. The relation between Epest-low and NASS estimates of trifluralin use on cotton is shown in figure 24A, and the differences between NASS estimates and both Epest-low and Epest-high estimates are shown by region and state in figure 24B.

The majority of Epest estimates differed from NASS estimates by less than a factor of two. The Epest estimates for most of the states in a particular region were evenly distributed around NASS use estimates. The strong correlation between estimates was driven by use estimates in Texas, which showed the least differences between Epest and NASS estimates of all the states.

Soybeans

For various years from 1992 through 2006, 97 Epest-low and Epest-high estimates of trifluralin use on soybeans were compared for 18 states from the Appalachian, Corn Belt, Delta, Lake States, Northeast, Southeast, and Northern Plains regions. Only Epest-high estimates significantly differed (p <0.05) from NASS estimates. The medians of the RE distributions comparing Epest-low and Epest-high to NASS estimates were 3 and 7 percent greater, respectively, indicating a general tendency for Epest estimates to be slightly greater than NASS estimates. Correlation coefficients for Epest and NASS comparisons were 0.91 for both Epest-low and Epest-high. The relation between Epest-low and NASS estimates of trifluralin use on soybeans is shown in figure 25A, and the differences between NASS estimates and both Epest-low and Epest-high estimates are shown by region and state in figure 25B.

The majority of Epest and NASS estimates were within a factor of two. One or more Epest and NASS estimates from every region except the Northern Plains differed by more than a factor of two. Iowa had greater trifluralin use on soybeans than other states.
Figure 24. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of trifluralin use on cotton: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates (\log_{10} EPest – \log_{10} NASS).
Figure 25. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of trifluralin use on soybeans: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Insecticide Estimate Comparisons between EPest and NASS

EPest and NASS estimates were compared for seven insecticides used on corn, cotton, or both, as summarized in tables 3 and 4. Only 2 of the 10 insecticide comparisons had sample numbers greater than 50; both of these were not significant and had RE values of 0.1 or less, indicating agreement between the estimates. Most of the other comparisons were not significant and had RE values of 0.15 or less, but methomyl and methyl parathion estimates for cotton significantly differed and had RE values greater than 0.6, which are discussed in the following sections.

Methomyl

For various years from 1992 through 2003, 27 EPest-low and EPest-high estimates of methomyl use on cotton were compared with NASS estimates for 9 states from the Appalachian, Delta, Mountain, Pacific, Southeast, and Southern Plains regions. Only EPest-low estimates significantly differed (p <0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 61 and 46 percent less, respectively, indicating a general tendency for EPest estimates to be less than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.76 and were 0.74 for EPest-high. The relation between EPest-low and NASS estimates of methomyl use on cotton is shown in figure 26A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 26B.

More than half of the EPest estimates were less than 50 percent of NASS estimates, although one EPest estimate from Arkansas was more than double the NASS estimate. The few EPest and NASS estimates for California, Georgia, and Texas were in closer agreement than the estimates for other states.

Methyl Parathion

For various years from 1992 through 2005, 50 EPest-low and EPest-high estimates of methyl parathion use on cotton were compared with NASS estimates for 8 states from the Appalachian, Corn Belt, Delta, Mountain, Southeast, and Southern Plains regions. Both EPest-low and EPest-high estimates significantly differed (p <0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 78 and 69 percent less, respectively, indicating a general tendency for EPest estimates to be less than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.47 and were 0.52 for EPest-high. The relation between EPest-low and NASS estimates of methyl parathion use on cotton is shown in figure 27A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 27B.

Most EPest and NASS estimates (EPest-low 37 of 50 and EPest-high 34 of 50) differed by more than a factor of two. The majority of EPest-low and EPest-high estimates were less than half NASS estimates, but, conversely, some EPest totals were at least twice NASS estimates. Generally, agreement between the estimates for methyl parathion was poor, and the RE was among the largest of all of the pesticides compared.
Figure 26. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of methomyl use on cotton: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} EPest - \log_{10} NASS$).
Figure 27. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of methyl parathion use on cotton: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Fungicide Estimate Comparisons between EPest and NASS—Propiconazole

For various years from 1993 to 2006, 14 EPest-low and EPest-high estimates of propiconazole use on winter wheat were compared with NASS estimates for 5 states from the Corn Belt, Lake States, Northern Plains, and Pacific regions. Only EPest-high estimates significantly differed (p <0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 27 and 92 percent greater, respectively, indicating a general tendency for EPest estimates to be greater than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.78 and were 0.65 for EPest-high. The relation between EPest and NASS estimates of propiconazole use is shown in figure 28A (low) and 28B (high), and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 28C.

About half of the EPest-low and EPest-high estimates differed from NASS estimates by less than a factor of two. Almost all EPest-high estimates were greater than NASS estimates, whereas more than half of the EPest-low estimates were lower than NASS estimates.
Figure 28. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of propiconazole use on winter wheat: (A) EPest-low estimates compared to NASS estimates, (B) EPest-high estimates compared to NASS estimates, and (C) Difference between EPest estimates and NASS estimates (log_{10} EPest – log_{10} NASS).
Summary of Comparisons

EPest and NASS state estimates for as many as 34 states from 10 USDA Farm Production Regions were compared for 48 pesticide-by-crop combinations for various years from 1992 through 2006. These comparisons included 21 herbicides used on corn, cotton, rice, soybeans, spring wheat, or winter wheat; 7 insecticides used on corn or cotton; and 1 fungicide used on winter wheat.

Overall, 73 percent of the EPest-low to NASS comparisons for herbicide-by-crop (27 of 37) and 60 percent of the comparisons for insecticide-by-crop (6 of 10) had medians of the RE distributions within 0.15. About 22 percent of the herbicide-by-crop (8 of 37) and 40 percent of the insecticide-by-crop (4 of 10) EPest-low to NASS comparisons had medians of the RE distributions that indicated EPest-low estimates tended to be lower than NASS estimates. Only two herbicide-by-crop EPest-low to NASS comparisons, but none of the insecticide-by-crop comparisons, had medians of the RE distributions that indicated EPest-low estimates tended to be greater than NASS estimates.

There was somewhat less agreement between EPest-high and NASS estimates. About 60 percent of the EPest-high to NASS comparisons for herbicide-by-crop and 30 percent of the comparisons for insecticide-by-crop had median of the RE distributions within 0.15. About 16 percent of the herbicide-by-crop and 10 percent of the insecticide-by-crop EPest-high to NASS comparisons had medians of the RE distributions that indicated EPest-high estimates tended to be less than NASS estimates. About 22 percent of the herbicide-by-crop and 60 percent of the insecticide-by-crop EPest-high to NASS comparisons had medians of the RE distributions that indicated EPest-high tended to be greater than NASS estimates.

Overall, the comparisons between EPest and NASS estimates generally support the representativeness and use of the EPest method to estimate pesticide use. Most EPest and NASS estimates for the same pesticides, crops, years, and states were not significantly different from each other. EPest and NASS estimates were produced from different surveys of individual farm operations, and the methods used to expand the surveyed data to estimate state use also differed; therefore, some disagreement in the estimates is expected.

Applications of EPest Use Data

Estimates of pesticide use developed by this study provide information on the amounts, distribution, and trends in agricultural use of 39 pesticides for 1992 through 2009. Maps showing the geographic distribution of estimated average annual pesticide use intensity in each county of the conterminous United States and a graph showing each pesticide’s national use-trend from 1992 through 2009 are provided at http://water.usgs.gov/nawqa/pnsp/usage/maps/.

The pesticide-use intensity estimates shown on the maps were calculated by dividing the pounds of pesticide applied annually to each county by the area of agricultural land (in square miles) in the county. These annual-use rates were applied to the satellite-based 2009 Cropland Data Layer (CDL) produced by the USDA (Johnson and Mueller, 2010). The CDL is a crop-specific land-cover dataset mapped at 56-meter resolution. Each 56-meter cell is assigned to one of over 100 agricultural or nonagricultural land-use classes. For the purpose of mapping pesticide-use intensity, the CDL was generalized into 1-kilometer cells. First, the CDL was divided equally into 1-meter cells and then it was converted into a binary raster with each cell labeled as either agriculture or non-agriculture and assigned a value of 1 or 0, respectively. The 1-meter cells were next aggregated to 1-kilometer cells, and the percentage of agricultural or non-agricultural land use in the 1-kilometer cell was calculated. County pesticide-use estimates were then multiplied by the percentage of agricultural land in each cell.

The county-level estimates are suitable for making national, regional, statewide, and watershed assessments of annual pesticide use during 1992–2009. Although estimates are provided by county to facilitate estimation of watershed-use rates for a wide variety of watersheds, there is a high degree of uncertainty in individual county-level estimates because (1) pesticide-by-crop use rates were developed on the basis of pesticide use on harvested acres in multi-county areas (CRDs) and then allocated to county harvested cropland; (2) pesticide-by-crop use rates were not available for all CRDs in the conterminous United States, and extrapolation methods were used to estimate pesticide use for some counties; and (3) it is possible that surveyed pesticide-by-crop use rates do not reflect all agricultural uses or crops grown.

For water-quality studies, estimates of pesticide use within watersheds and groundwater recharge areas can be used to assist with study design and to help explain and model pesticide occurrence in water resources. Information on pesticide use and other watershed characteristics serve as explanatory variables in regression models developed to predict concentrations of pesticides in streams and groundwater (Barbash and others, 2001; Stackelberg and others, 2006; Stone and Gilliom, 2009). Pesticide-use information has also been used to explain the atmospheric transport of agricultural chemicals from the area the pesticides were applied to other sites where they are detected in air and rain samples (Majewski and others, 1998). The availability of pesticide-use information for the 18-year study period enables assessments of the temporal and spatial variations in pesticide use that can relate these patterns to changes in water quality (Sullivan and others, 2009). The methods developed in this study are applicable to other agricultural pesticides and years.
Summary and Conclusions

A method was developed to estimate pesticide use (EPest) for 39 pesticides used on a variety of row crops, fruit, nut, and specialty crops grown throughout the conterminous United States for 1992 through 2009. EPest pesticide-by-crop rates were developed for individual crops on the basis of (1) surveyed pesticide-use reports from farm operations within CRDs and (2) harvested crop acreage reported by USDA Census of Agriculture and NASS annual crop surveys. EPest rates were developed for all crops that were surveyed in a particular year by dividing the pounds of a pesticide applied to each crop grown in the CRD by the harvested acreage for that crop. Not all crops were surveyed in each year and CRD; therefore, extrapolated rates for non-surveyed CRDs, referred to as tier 1, tier 2, and regional EPest rates, were developed by using information from adjacent CRDs.

The EPest rates were applied to county harvested-crop acreage differently for surveyed CRDs with unreported pesticide-by-crop estimates to produce EPest-low and EPest-high estimates of pesticide use for every year from 1992 through 2009. If a CRD was surveyed, but there was no reported pesticide use, then the EPest-low method did not estimate pesticide use for the CRD; EPest-high treated these non-reported estimates as unsurveyed, and pesticide use was estimated on the basis of an EPest extrapolated rate. For both methods, if a CRD was not surveyed, then pesticide use was estimated by using EPest extrapolated rates, if possible.

About 45 percent of the national EPest-low and EPest-high annual pesticide-by-year estimates differed from one another by less than 25 percent, including the estimates for several of the most widely used pesticides, such as acetochlor, atrazine, glyphosate, and metolachlor. EPest-high estimates, however, were more than double EPest-low totals for six or more years for the pesticides alachlor, butylate, carbofuran, cyanazine, ethoprophos, linuron, methyl parathion, metolachlor, pebulate, propachlor, and terbacil. EPest extrapolated rates used to calculate EPest-high estimates contributed a significant amount to the national total for some pesticides and years for some specialty crops and major crops, such as corn and alfalfa, and land uses, such as summer fallow, pasture, and rangeland. In general, non-surveyed use represented a greater percentage of the national estimate for some pesticides and crops because some pesticides were reported less frequently and some crops were not surveyed as extensively during the latter part of the study. EPest tier 1, tier 2, and regional rates have inherently greater uncertainty than rates for surveyed CRDs because a pesticide could have been applied to a localized area in response to a pest infestation, while the same crop grown in another part of the same region would not be managed in the same way, which can result in misrepresentative estimates of pesticide use.

National and state annual estimates for a subset of the 39 pesticides were compared with data published by other sources. EPest-low and EPest-high national estimates for seven herbicides were compared with published data from the USEPA, NASS, and NPUD for three periods (1997, 2001–02, and 2006–07). Overall, there was agreement between EPest estimates and the estimates from USEPA and NPUD; however, EPest estimates tended to be greater than NASS estimates, which are not complete national estimates.

A second set of evaluations compared EPest state and state-by-crop estimates for selected pesticides with NASS estimates State estimates for 33 pesticides that had 5 or more estimates for a combination of states, crops, or years were evaluated, in addition to the estimates for 29 pesticides that had 10 or more state and year estimates for corn, cotton, soybeans, spring wheat, or winter wheat. Of the 33 pesticides evaluated, less than one-third—10 EPest-low and 8 EPest-high—had median RE values significantly different from zero based on the 95-percent confidence interval on the median. EPest-high estimates were mostly greater than NASS estimates when they differed significantly, whereas EPest-low estimates were more evenly distributed around NASS estimates when they differed significantly.

EPest and NASS estimates for individual states and crops were compared for selected years from 1992 to 2006. This comparison was made for 48 pesticide-by-crop combinations, including 21 herbicides, 7 insecticides, and 1 fungicide used on corn, cotton, soybeans, rice, spring wheat, or winter wheat. Most EPest and NASS pesticide-by-crop estimates were not significantly different, had low median relative errors (RE < 0.15), and had relatively strong correlation coefficients (r > 0.75). EPest-low and EPest-high state estimates for some pesticide-by-crop combinations, however, were significantly different (p<0.5) from NASS estimates. Among the pesticide-by-crop estimations compared, those that did show a significant difference between EPest and NASS estimates did not show clear or consistent patterns by pesticide type, crop, year, or state. EPest and NASS estimates were produced from different surveys of individual farm operations, and the methods used to expand the surveyed data to state estimate state use also differed; therefore, some disagreement in the estimates is expected. The comparisons between EPest and NASS estimates generally support the representativeness and use of the EPest method to estimate pesticide use.
References Cited

Appendix 1. Summary of Epest-Low and Epest-High Annual National Totals by Pesticide and Crop Type.

Appendix 1 is available in Microsoft Excel® format at http://pubs.usgs.gov/sir/2013/5009/appendix1.xlsx

Appendix 2. Epest-Low and Epest-High Annual National Totals Derived from Epest Surveyed, Tier 1, Tier 2, and Regional Rate Estimates.

Appendix 2 is available in Microsoft Excel® format at http://pubs.usgs.gov/sir/2013/5009/appendix2.xlsx