Slides supporting the testimony of Michael E. Ketterer, PhD

Fifth Meeting of the Radioactive and Hazardous Materials Committee November 15, 2024 State Capitol, Room 317, Santa Fe

=	Google Scholar	Ketterer flagstaff plutonium	
•	Articles	About 54 results (0.06 sec)	
	Any time	Determination of plutonium and other transuranic elements by inductively	
	Since 2024	coupled plasma mass spectrometry: a historical perspective and new frontiers in	
	Since 2023	the	
	Since 2020	ME Ketterer, SC Szechenyi - Spectrochimica Acta Part B: Atomic, 2008 - Elsevier	
	Custom range	Plutonium and associated TRU are now widely used as powerful tracers of recent earth and	
		save III Cite Cited by 153 Related articles All 7 versions	
	Sort by relevance	A Save 22 Cite Cited by 155 Related atticles All 7 versions	
	Sort by date	Reaching stable users less the signal Du sources in the antinement using	men and and and a set
		Resolving global versus local/regional Pu sources in the environment using	[PDF] researchgate.net
	Any type	ME Ketterer KM Hafer CL Link D Kolwaite - Journal of analytical 2004 - pubsities org	
	Review articles	versatile method for the determination of plutonium activities and isotonic compositions in	
		samples An undisturbed soil profile from Lockett Meadow (Flagstaff, Arizona, USA) exhibits an	
	include patents	☆ Save 切 Cite Cited by 86 Related articles All 7 versions	
	✓ include citations		
	Create alert	Plutonium isotopes: an effective tool for fluvial sediment sourcing in urbanized catchments	[PDF] wiley.com Full View
		A Percich, A Husic, ME Ketterer - Geophysical Research Letters, 2022 - Wiley Online Library	
		sensitivity analysis has not been performed on plutonium sediment fingerprinting. The	
		objective of this study was to assess the utility of plutonium isotopes as tracers of fluvial sediment	
		☆ Save 切 Cite Cited by 5 Related articles All 5 versions	
		239 240 241-	IPDEI academia edu
		²⁰⁰ , ²¹ Pu fingerprinting of plutonium in western US soils using ICPMS:	[PDF] academia.edu
		solution and laser ablation measurements	
		JV Cizdziel, ME Ketterer, D Farmer, SH Faller Analytical and, 2008 - Springer	
) or electrodeposited alpha sources to characterize plutonium activities and atom ratios prevalent inNevada Test Site (NTS) plutonium . This study illustrates two different ICPMS based	
		Save III Cite Cited by 54 Related articles All 16 versions	

Applications of transuranics as tracers and chronometers in the environment ME Ketterer, J Zheng, M Yamada - Handbook of Environmental Isotope ..., 2012 - Springer ... Plutonium that has been subjected to lengthy reactor irradiation (ie, "burn-up") also contains relatively larger abundances of the heavier isotopes. As is seen in Fig. 20.2, the Pu isotopic ... Save 99 Cite Cited by 37 Related articles All 7 versions

Geophysical Research Letters[®]

RESEARCH LETTER

10.1029/2021GL094497

Key Points:

- ²³⁹⁺²⁴⁰Pu activity is a robust tracer for describing sediment sources and fluvial mixtures in a rapidly urbanizing landscape
- Frequentist and Bayesian models were consistent in estimating increased bank erosion with increasing urban land use
- Sediment sourcing is dependent on discharge in rural watersheds whereas it is independent of discharge in urban watersheds

Supporting Information:

Supporting Information may be found in the online version of this article.

Correspondence to:

A. Husic, ahusic@ku.edu

Citation:

Percich, A., Husic, A., & Ketterer, M. E. (2022). Plutonium isotopes: An effective tool for fluvial sediment sourcing in urbanized catchments. *Geophysical Research Letters*, 49, e2021GL094497. https://doi.org/10.1029/2021GL094497

Received 24 MAY 2021 Accepted 6 JAN 2022

Plutonium Isotopes: An Effective Tool for Fluvial Sediment Sourcing in Urbanized Catchments

Abigal Percich¹, Admin Husic¹, and Michael E. Ketterer²

¹Department of Civil, Environmental and Architectural Engineering, University of Kansas, Lawrence, KS, USA, ²Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA

Abstract Sediment management is currently limited by uncertainties in the applicability of existing radionuclide tracers and the effects of urbanization. Here, we use plutonium isotopes (²³⁹⁺²⁴⁰Pu) from weaponstesting fallout to trace sediment transport across five watersheds in an urbanizing landscape in Kansas, USA. Historic flooding in the region provided an opportunity to assess extreme connectivity of sediment sources. ²³⁹⁺²⁴⁰Pu activity of transported sediment decreased as catchments urbanized, indicating a greater contribution from subsurface bank sediment; Bayesian modeling predicted 50% (8%–80%) bank sourcing in the most rural watershed, which rose to 93% (73%–100%) in the most urban catchment. ²³⁹⁺²⁴⁰Pu activity provides explanatory information on the superposition of sediment sources, which is beyond that given by traditional organic and geochemical tracers that primarily infer vegetative and geologic sourcing, respectively. Our study demonstrates the utility of ²³⁹⁺²⁴⁰Pu as a sediment tracer for managing erosion under anthropogenic change.

Plain Language Summary Sediment is one of the most common contaminants in rivers around the globe. The susceptibility of soil to erosion increases as humans convert natural landscapes into rural and urban systems. Uncertainties remain regarding how urbanization alters sediment pathways and what tools are appropriate for quantifying this alteration. Radioactive isotopes, generated from nuclear weapons testing in the 1950s, have proven useful in this regard, although the most prominent tracer, for example, cesium, is losing some utility due to a short half-life and extensive radioactive decay. We suggest that plutonium isotopes, which have longer half-lives, are a viable option for tracing sediment in modern landscapes. Plutonium results suggest that in rural basins the source of sediment transitions from upland soil during low-flows to bank material at high-flows. On the other hand, urban streams always deliver bank sediment, regardless of storm intensity. Our study demonstrates the utility of plutonium as an alternate sediment tracer and highlights how urbanization changes the pathways and mechanisms of fluvial sediment transport.

ORIGINAL PAPER

^{239, 240, 241}Pu fingerprinting of plutonium in western US soils using ICPMS: solution and laser ablation measurements

James V. Cizdziel • Michael E. Ketterer • Dennis Farmer • Scott H. Faller • Vernon F. Hodge

Available online at www.sciencedirect.com

Journal of Environmental Radioactivity 73 (2004) 183-201

www.elsevier.com/locate/jenvrad

JOURNAL OF

ENVIRONMENTAL

RADIOACTIVITY

Resolving Chernobyl vs. global fallout contributions in soils from Poland using Plutonium atom ratios measured by inductively coupled plasma mass spectrometry

Michael E. Ketterer^{a,*}, Kevin M. Hafer^a, Jerzy W. Mietelski^b

 ^a Department of Chemistry, Northern Arizona University, Box 5698, Flagstaff, AZ 86011-5698, USA
^b Environmental Radioactivity Laboratory, The Henryk Niewodniczański Institute of Nuclear Physics, PL 31-324 Kraków, Radzikowskiego 152, Poland

Received 18 December 2002; received in revised form 21 August 2003; accepted 3 September 2003

LA-UR-15-22380 (Accepted Manuscript)

Distribution of neptunium and plutonium in New Mexico lichen samples (Usnea arizonica) contaminated by atmospheric fallout

Oldham, Warren James Hanson, Susan Kloek Lavelle, Kevin B. Miller, Jeffrey L.

Table 2 Analytical parameters and settings of ICP-MS Xseries II

Parameters	ICP-MS Xseries II			
Power	1400 W			
Gas flows	Cool gas: 13 L/min			
	Auxiliary gas: 0.60-0.65 L/min			
	Nebulizer gas: 0.74-0.78 L/min			
Sensitivity (²³⁸ U)	$3 \times 10^6 \text{ cps/ppb}$			
Backgrounds (2% HNO ₃)	<0.5 cps			
Oxides (Ce) and double charge ions (Ba)	< 3%			
Sample Inlet System	ESI APEX IR			
Spray and flow rate	Self-aspirating PFA nebulizer: 0.28 mL/min			
Cones	Ni sample and skimmer cones (Xs)			
Standard resolution	0.75 amu (10% of peak height)			
²³⁸ U ¹ H/ ²³⁸ U	3 x 10 ⁻⁵			

Provided by the author(s) and the Los Alamos National Laboratory (0000-00-00).

To be published in: Journal of Radioanalytical and Nuclear Chemistry ; 30 August 2015

DOI to publisher's version: 10.1007/s10967-015-4402-0

Permalink to record: http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-15-22380

21 Acid 7/2/24	7/27/2024 8:	22:32 AM		
13 400	25596.885	16013.491	157.101	515.015
14 600	25062.800	15876.952	170.202	511.514
13 100	24408.825	16584.714	163.701	494.413
13 700	25022.837	16158.386	163.668	506.981
0.794	595.038	375.470	6.550	11.023
5.794	2.378	2.324	4.002	2.174

Ketterer LANL study 13Aug2024

https://nukewatch.org/interactive-map-plutonium-contamination-and-migration-around-lanl/

M Gmail ♀ Maps 🔤 Translate

Kinnikinnik Park is one of many popular recreation areas located along the Acid Canyon trail system. Nadav Soroker/Searchlight New Mexico

A nuclear legacy in Los Alamos

After three cleanups, independent analysis shows 80-year-old plutonium persists in Acid Canyon and beyond

by Alicia Inez Guzmán August 15, 2024

Super weapons grade ²³⁹⁺²⁴⁰Pu as a contaminant of concern in sediment, soil, water and vegetation: Acid Canyon and Los Alamos Canyon, New Mexico

Michael E. Ketterer, PhD Professor Emeritus, Chemistry and Biochemistry, Northern Arizona University Flagstaff, AZ 86911-5698 USA <u>Michael.Ketterer@nau.edu</u>

Phone: +1 928 853 7188

Sediments from Acid Canyon exhibited a wide range of ²³⁹⁺²⁴⁰Pu activities, all of LANL provenance min 0.43; max 78, geometric mean 14 pCi/g

50 pCi/g, remediation standard applied by DOE to the COU at Rocky Flats (not accessible by public)

8 pCi/g, remediation standard applied by USAF at the Fort Dix BOMARC missile silo fire site (not accessible by public)

2 dpm/g = 0.9 pCi/g, State of Colorado, construction dust standard for workers in areas with contaminated soils

Surface soils and post-bomb sediments typically contain well under 1 pCi/g ²³⁹⁺²⁴⁰Pu from 1950's-1960's atmospheric nuclear tests with a characteristic ²⁴⁰Pu/²³⁹Pu = 0.18; lower activities are expected in arid areas

Ketterer NM 15Nov2024 testimony

ROCKY FLATS LEGACY MANAGEMENT AGREEMENT

Analyte	CAS Reference Number	Standards [a] (mg/L)	Basis [a, b]	PQLs [c] (mg/L)	Analyte Category [d]				
Pyrene	129-00-0	2.10E-01	W+F, WS		SVOCs				
Selenium [e]	7782-49-2	4.60E-03	AL		Metals				
Silver, dissolved	7440-22-4	6.00E-04	TVS [h]	5.00E-03	Metals				
Styrene	100-42-5	1.00E-01	WS		VOCs				
1,1,2,2-Tetrachloroethane	79-34-5	1.70E-04	W+F	2.00E-03	VOCs				
Tetrachloroethene	127-18-4	5.00E-03	W+F, WS		VOCs				
Toluene	108-88-3	1.00E+00	W+F, WS		VOCs				
1,2,4-Trichlorobenzene	120-82-1	3.50E-02	W+F		VOCs				
1,1,1-Trichloroethane	71-55-6	2.00E-01	WS		VOCs				
1,1,2-Trichloroethane	79-00-5	2.70E-03	W+F		VOCs				
Trichloroethene	79-01-6	2.50E-03	W+F		VOCs				
Vinyl chloride	75-01-4	2.30E-05	W+F	5.00E-04	VOCs				
Xylene (total)	1330-20-7	1.00E+01	WS		VOCs				
Zinc, dissolved	7440-66-6	1.68E-01	TVS [h]		Metals				
RADIONUCLIDES [I]									
Americium 241 [e]	14596-10-2	0.15 (pCi/L)	BS		Other				
Plutonium 239/240 [e]	10-12-8	0.15 (pCi/L)	BS		Other				
Uranium, total [e]	7440-61-1	16.8 (µg/L)	SS		Other				

Table 1. Surface Water Standards (continued)

ROCKY FLATS LEGACY MANAGEMENT AGREEMENT

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 8 and THE STATE OF COLORADO

> FEDERAL FACILITY AGREEMENT AND CONSENT ORDER

CERCLA 8-96-21 RCRA(3008(h)) 8-96-01 STATE OF COLORADO DOCKET # 96-07-19-01

IN THE MATTER OF:

UNITED STATES DEPARTMENT OF ENERGY

ROCKY FLATS

SITE

ROCKY FLATS LEGACY MANAGEMENT AGREEMENT

PART 1 PARTIES AND JURISDICTION

 The Parties to this Agreement are the United States Environmental Protection Agency, Region 8 (EPA), the Colorado Department of Public Health and Environment (CDPHE or "State"), and the United States Department of Energy (DOE).

https://lmpublicsearch.lm.doe.gov/lmsites/1679-rflma.pdf

